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PREFACE

Inthe curricular structure introduced by this University for students of Post-Graduate
degree programme, the opportunity to pursue Post-Graduate course in a subject is
introduced by this University is equally available to all learners. Instead of being guided
by any presumption about ability level, it would perhaps stand to reason if receptivity
of a learner is judged in the course of the learning process. That would be entirely in
keeping with the objectives of open education which does not believe in artificial
differentiation. 1 am happy to note that the university has been recently accredited by
National Assesment and Accreditation Council of India (NAAC) with grade “A”.

Keeping this in view, study materials of the Post-Graduate level in different subjects
are being prepared on the basis of a well laid-out syllabus. The course structure com-
bines the best elements in the approved syllabi of Central and State Universities in
respective subjects. It has been so designed as to be upgradable with the addition of
new information as well as results of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the prepara-
tion of these study materials. Co-operation in every form of experienced scholars is
indispensable for a work of this kind. We, therefore, owe an enormous debt of gratitude
to everyone whose tireless efforts went into the writing, editing, and devising of a proper
lay-out of the materials. Practically speaking, their role amounts to an involvement in
‘invisible teaching'. For, whoever makes use of these study materials would virtually
derive the benefit of learning under their collective care without each being seen by the
other.

The more a learner would seriously pursue these study materials the easier it will be
for him or her to reach out to larger horizons of a subject. Care has also been taken to
make the language lucid and presentation attractive so that they may be rated as quality
self-learning materials. If anything remains still obscure or difficult to follow, arrange-
ments are there to come to terms with them through the counselling sessions regularly
available at the network of study centres set up by the, University.

Needless to add, a great deal of these efforts are still experimental—in fact, pioneer-
ing in certain areas. Naturally, there is every possibility of some lapse or deficiency
here and there. However, these do admit of rectification and further improvement in
due course. On the whole, therefore, these study materials are expected to evoke wider
appreciation the more they receive serious attention of all concerned.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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1.1 Objectives

After studying this unit, the reader will be able to know
e what is a mathematical function
e what is meant by derivative or differentiation of a function
e the link between slope and curvature of a function and its derivative
¢ higher order partial derivatives
e the concept of total derivative
e the concept and properties of homogeneous functions
e the Euler’s theorem

1.2 Introduction

Economics, generally speaking, deals with relationships among various economic
variables. These relationships may concisely and precisely be discussed by the
mathematical concept of ‘function’. Again, while making an economic decision, we
have to consider a basic question. The question is : will a particular line of action add
more to our benefits than the efforts spent on the action? This is a vital question for
making an economic decision or for solving any economic problem. Naturally, if benefits
to be received exceed efforts to be spent, the economic decision will be undertaken. In
the opposite case, the decision will be rejected. If they are equal, the matter is a case of
indifference. In that case, the decision may or may not be undertaken. In a word, the
answer to our basic question determines the economic viability of a line of action. In
Economics, this is the core of marginal analysis which is closely related to a mathematical
concept called derivative or the mathematical technique of differentiation. The
mathematical concept of derivative or differentiation has made marginal analysis
operative, precise and exact in economic decision making. Hence we begin our discussion
on Mathematical Analysis with the notion of function and its derivative/differentiation.

1.3 Definition and Types of Functions

Simply speaking, two varibles x and y are said to be functionally related if for a particular
value of x, we get a particular value of y. We generally denote the function as :
y = f(x). Here x is called independent variable and y is called dependent variable, and f
is the functional notation stating the nature of relation between x and y. Thus y = f(x)
means that the value of y somehow depends on the value of x. Here the value of y
depends on the value of x. Hence y is called the dependent variable and x is called the
independent variable or explanatory variable. The word variable means anything whose
value varies or changes.
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Now, the value of y may depend on the values of a set of variables, say, X, X,, ..., X...
Then we shall write the function in usual notation as, y = f(x,, X,, ..., X,) where y is the
dependent variable, x;, x, ..., X, are different independent variables; and
f denotes the functional relationship.

Thus, technically speaking, a function is a mathematical formalisation of the
relationship whereby the values of a set of independent variables determine the value of
the dependent variable. Stating alternatively, a function is a mathematical relationship
whereby the value of the dependent varible is determined by the values of a set of
independent variables. Thus, a function is a mathematical expression of dependency
between two or more variables. When we say that ‘y is a function of x’, it implies that
for each value of x we get a single, definite value of y. So long there is a one to one
correspondence between two variables, we write, y = f(x). It simply says that y changes
as x does.

In this connection, two points may be noted. First, in the functional expression
y = f(x), we have called x the independent variable while the variable y is called the
dependent variable. Here, y is a function of x and it does not necesarily imply that x is
also a function y. The value of x may or may not depend on the value of y. Secondly, in
the definition of a function, we have stipulated a unique value of y for each value of x.
However, the converse is not required. In other words, more than one x value may
legitimately be associated with the same value of y. If there is one to one corespondence
between the value of x and the value of y, we say that y is a single-valued function of x.

In Economics, we come across a variety of functions. If demand for a commodity
(D) depends on its price (P), we write, D = f(P). If consumption (C) depends on
income(Y), we may say, C = F(Y). If the rate of investment (I) depends on the rate of
interest (r), we get the investment function : I = g(r). Here the symbols f, F and g all
denote the functional relation in demand function, consumption function and investment
function, respectively. Here, D, C, | are dependent variables while P, Y and r independent
variables. If we assume that the level of saving (S) depends on the level of income ()
and the rate of interest (r), our saving function can be written as :
S =S(Y, r) where the second ‘S’ stands for functional relation. If the level of consimption
expenditure of an economy (C) depends on the level of income (Y), the rate of interest
(r), the volume of assets (a), the distribution of income (d), the age-distribution of
population (A), the volume of advertisting expenditure (e), etc., the consumption function
of the economy can be written in more general formas : C = (Y, r, a, d, A, e, ...).

O Typesof Functions

The expression y = f(x) is a general statement. A function is also called mapping or
transformation which implies the action of associating one thing with another.In the
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statement y = f(x), the functional notation ‘f” may thus be interpreted to mean a rule by
which different values of x are mapped or transformed into different values of y. Thus,
the expression y = f(x) implies that a mapping is possible but the actual rule of mapping
is not explicitly mentioned. Depending on different rules of mapping, we get different
types of functions. We mention below some specific types of functions which are more
common in Economics.

3 Constant Function :

A constant does not change its magnitude. In a given operation, it has a fixed value. For
example, each number in isolation in the number system can be regarded as a constant.
If we say that k is a constant such that k = 7, it implies that in any entire
operation, k takes or assumes only this value of 7. Now, a function whose range consists
of only one element, is called a constant function. The constant function assumes only
one value or one magnitude. For example, let y = f(x) =

10 is a constant function. We can alternatively write it as Iy
y = 10 or f(x) = 10. Here the value of y remains 10
irrespective of the value of x. The general expression for y = (K)
a constant function is : y = k or, f(x) = k where k is a real k [k
number. In a two dimensional plane, a constant function —x > X
y = k can be represented by a horizontal straight line. (Fig (Fig. 1.1
. / : g.11)
1.1). In Economics, when investment (1) is autonomously
given or exogeneously given at |, we write | = I, or, say, for example,

I =~ 1000m. It is a case of constant function.

Similarly, total fixed cost is fixed and does not depend on the level of output i.e.,
TFC = k is a constant function. Similarly, if price is fixed (as in the case of perfect
competition), we write, p = p, and it is a constant function. All these are examples of
constant function. In the co-ordinate plane, they will appear as horizontal straight lines.

O Polynomial functions

The word “polynomial’ means ‘multiterm’. A polynomial equation is an equation by
which, in general, several terms in an independent variable are raised to various powers.
The degree of a polynomial equation is the highest power of the independent variable in
that equation. A polynomial function of a single variable x has the general form :

y=a,taXx+ax’+.. +ax".

This is a polynomial in x of degree n provided a, = 0 . Remembering that x° = 1 and
x! = X, we may rewrite the polynomial equation as :

y=ax’+axt+ax’+.. +ax
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It shows a specific pattern of the equation. In this equation, each term contains a
coefficient as well as a non-negative integer power of the variable x. Taking different
values of the integer n, we may get several sub-categories of polynomial functions. For
example, we have shown the following cases :

Ifn=0, we have, y = a,. Itis a constant function

Ifn=1, we have, y = a, + a . It is a linear function.

Ifn=2, we have, y = a, + a,x + a,x? It is a quadratic function.

Ifn=3, we get,y=a,+ax+ax*+ax: This is a cubic function in x, and so on.

Thus, polynomial functions represent a general class of several functions. Our previous
constant function is just a special case of polynomial function when the power-integer
(n) is equal to zero. In other words, a constant function is a polynomial of degree zero.
A linear equation is a first degree polynomial (n = 1). A quadratic equation is a second
degree polynomial (n = 2). A cubic equation is a third degree polynomial
(n=3), and so on.

Let us consider the shapes of these functions in a two- }/
dimensional diagram. We have shown the shape of the ¥
constant function in our figure 1.1. A linear function will y= 2
appear as a straight line when plotted in the co-ordinate
plane. We have shown this in figure 1.2. Puttingn=1in %
the general form of the polynomial equation, we get the
first degree polynomial or the linear function : (Fig. 1.2)
y=a,+ax

In this function, a, is vertical intercept. (We get it by putting x = 0 in the equation).
The coeffecient a, measures the slope (the steepness of incline) of the line. We have
assumed that a,>0and a, > 0. As a,> 0, the straight line has a positive vertical intercept
equal to a,. As a, > 0, the straight line is upward y
rising. Taking example from Economics, in our N
consumption function, a, > 0, a, > 0. Thus, the
straight line drawn in figure 1.2 resembles the shape

ar

Assuming a,>0,a,>0
>X

[

y=a,+a,xa8>0,a<0

of the consumption function. If a, <0, the straight %

line will be downward sloping as shown in figure >X
1.3. Again, taking an example from Economics, in 0

our linear demand function where demand (D) is (Fig. 1.3)

an inverse function of p, we write, D = a, + a,p, a, <
0. Thus, our straight line drawn in figure 1.3. resembles a linear demand function.

A quadratic function plots as a parabola — a curve with a single bump or wiggle.
Putting n = 2 in the general form of a polynomial function, we get y = a, + a,x + a,x2.
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This is a quadratic function or a second degree polynomial in X. Assuming a, > 0 and a,
< 0, we have drawn a quadratic function in our figure 1.4.
When a, < 0 and a, = 0, the curve will start from the origin
(as a, is the vertical intercept of the curve) and be concave
to the x-axis. For example, in Economics, our total revenue
function or TR curve is generally of this shape If a, > 0, 3
with a, and a, also positive, the curve will open the other Y=t a X+ aX,
way. It will then display, as put it by A.C. Chiang, a valley, a,| (case of a,<0)
rather than a hill. For example, our average cost (AC)and —© >X
marginal cost (MC) curves resemble this shape. (Fig. 1.4)

Let us consider the shape of a cubic function. Putting n o
= 3 in our general equation of the polynomial function, we get the cubic
function :y=a,+a,x + a,x? + a,x%. This is a cubic function
of x or a third degree polynomial in x. When a polynomial .
function of degree n is plotted on a graph paper, the number Y4 x a7
of turning points may be up to (n—1). Thus a linear function N o4
(n=1) has zero or no turning point. A quadratic function “

(n = 2) has one curvature or one turning point. Thus, a
cubic function (n = 3) may have two turning points. Hence, a,
the graph of a cubic function will, in general, — >X
manifest two wiggles. This is shown in our figure 1.5. )

Here we have drawn a cubic function assuming a, < 0. (Fig. 1.5)

These functions have many uses in Economics. The curve in our figure resembles the
shape of the total cost (TC) function. If we have a, = 0 and again, a, <0, the curve will
pass through the origin, keeping its shape unchanged. It will then resemble the total
variable cost (TVC) curve.

> <

>
o

0O Rational functions
A function expressed as a ratio of two polynomial functions is known as rational

2
function (meaning ratio-nal). For example, y = X+ 7x+9 is a rational function. As

4X+5
per this definition, any polynomial function must itself be a rational function. For, it can
always be expressed as a ratio to 1, which is a constant function. For example, y = 5x2 +
3x + 6 is a quadratic function or a polynomial of degree 2.

2 2
NOW, y = 5x2 + 3x + 6 = 5X +13x+6:5x ;3;<+6
X
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_ second degree polynomial
constant function or zero degree polynomial -

Thus the polynomial y = 5x? + 3x + 6 is itself a rational function.
A special rational function has interesting applications in Economics. Let the function

a . ) \
be,y= ;O where a, is a constant (i.e. constant function).

Then, Xy = a, = constant. Plotting this on a two-dimensional /
diagrami.e. on (X, y) plane, we get a rectangular hyperbola Xy = a
(Fig. 1.6). Here the product of two variables is always a // / °
constant (xy = a,). 0 >X
This means that the area of all the rectangles obatained .

by joinig abscisssa and ordinate of all points on this curve (Fig. 1.6)

is constant. Such a curve in co-ordinate geometry is called a rectangular hyperbola.
Now, if X represents price and y represents quantity demanded, then xy represent total
reveume of the seller or total expenditure of the buyer. Now, the equation of the rectangular
hyperbola is : xy = a, = constant. So, if the total reveume of the seller or total expenditure
of the buyer remains the same or constant, the demand curve will be a rectangular
hyperbola. Another example from Economics is the shape of the AFC curve. We know

that AFC =12

q

. AFC x g = TFC = constant = a, (say)

So, plotting AFC on one axis and output (q) on the other, the AFC curve will be a
rectangular hyperbola.

The rectangular drawn from xy = a, never meets the axes. Rather the curve approaches
the axes asymptotically. As y becomes very large, x will become very small, but not
equal to zero i.e., the curve will not meet the y-axis. Similarly, if x becomes very large,
y will be very small, but not equal to zero, i.e., the curve will not meet the x-axis either.
In symbols, as y — oc, x — 0 and as x — o, y — 0. Such a curve is generally referred to
as an asymptotic curve.

O Inversefunction

We know that a function y = f(x) represents a one-to-one correspondence or one-to-
one mapping. This means that for a particular value of x, we get a particular value of x.
Now, the function y = f(x) may have an inverse function, say, x = f(y). It is read as “x
is an inverse function of y’. Here, f represents a functional symbol. It does not mean
the reciprocal of the function f(x). Thus, x = f1(y) = h(y) (say). Thus, the symbol f*
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. 1
signifies a function related to the function f. For example, y = 10x + 7, then X = E(X -7).

These two are inverse functions of each other. If y = f(xX) = 3x, then, alternatively,

1
X ==y =h(y).
3 y =h(y)

Let us give an example of an inverse function from Economics. Let quantity
demanded (q) be the function of price : q = f(p). Let the function be linear. Let its

1

a
specific formbe : d = E_E'p' (a>0, b>0). Plotting g on the vertical axis and p on the

horizontal axis, we get a downward sloping linear demand function. Let us deduce the

1 a
inverse demand function from this demand function. We may write, Bp:B_q’

or, p=a-"bq. This is the inverse demand function, say, p = h(q) of our previous demand
function. Plotting p on the vertical axis and g on the horizontal axis, we get, once again,
a downward sloping demand function. By demand function we generally mean this
inverse demand function proper.

O Non-algebraic Function

Any function expressed in terms of polynomials and/or roots, such as, square root
of polynomials is an algebraic function. So far, functions we have discussed are all
algebraic functions. If, however, the independent variable does not appear as a
polynomial, the function is said to be a non-algebraic function. It may be of three
types :

(i) Exponential function, for example, y = ab*.

(i) Logarithmic function, for example, y = log,x

(iii) Trigonometric function, for example, y = cos x.

Trigonometric functions are also called circular functions.

Non-algebraic functions are also known by the more esoteric name of transcendental
functions.

1.4 Concepts of Derivative and Differentiation

When two variables x and y are somehow related, we express that relation by the
functional notation, say, y = f(x). It simply states that the value y depends on the value
of x. In other words, it states that the value of y changes as the value of x does. Now,
suppose when x = x,,, y = f(x,) = y,(say). Further, suppose that x changes its value from
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the initial value of x; to X, and correspondingly the value of y also changes from its
initial value of y, to y,. Then the rate of change of y due to change in X is equal to
Yi7¥o . The concept of derivative gives us the rate of change of the dependent variable
X, =X,

when the change in the independent variable is very small. If we denote the change iny
by Ay i.e., Ay =y, -y, and the change in X by Ax i.e., AX = X, — X,,, then we can write,

%:u. This is the change in y per unit change in X. Now, if the change in X is
X X, —X,

d
very small (Ax — 0), we call it derivative of y with respect to x. It is denoted by d—z

Ay d _ .
Thus, Ai-ioA—i :d_i' Thus, derivative of a function gives us an idea about the rate of

change of the dependent variable when the independent variable changes by a very

d
small amount (Ax — 0). Thus, the derivative of y function, d—i is change in y due to

d
infinitesimal change in x. The act of finding the value of this derivative d—i is called

differentiation.
Let us see how this value can be found out. We have said that y = f(x). Initially, when
X=X, Y = f(X,) = y,(say) and as x changes to X, (= X, + AX), y changes to f(x,) =y, (say).
AY _Yi-Y, _ FO)-f(x,)

So, we can write, — =
AX X, =X, X, —X

1 0

We have mentioned that x changes by Ax amount. So, the new value of x i.e., X, =

Ay (X, +Ax)—f(x
X, + AX. Hence we can write, A_i: %, )~ (%)

as X, — X, = Ax. We generally use

AX
h for AXx.
Ay f(x, +h)-f(x
So, A—z(/: X, z ( °).This is the rate of change of y at a given value of x (say,

X,) and is known as instanteneous rate of change. In general we can write for any value

of x, 2Y _ Tx+)-f().

AX h
The derivative of y = f(x) is obtained when Ax(= h) tends to zero. This derivative of
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y = f(x) with respect to x is generally denoted by g_yor f'(x) or OIi(y) ordi[f(x)].
X X X

Thus, dy _ f'(x) Ei(y) = Lt fx+h)=1(x) To repeat, the act of finding out the
dx dx h—0 h
d
value of el or the value of derivative is called differentiation. The method is known as

dx
differentiation from first principle or differentiation from definition. It may be

. N . dy . . .
mentioned in this connection that d—i is not a ratio of dy to dx. Rather, it indicates an

A
operation— an operation of finding out the value of A—i when Ax — 0. The alternative

d
notation f'(x) or d—i explicitly reflects this idea. Let us give some examples of finding

d
out the value of d—z from the function y = f(x).

d
Example1.1: Giveny =10x + 7, find d—i:

Solution : Here, y = f(x) = 10x + 7.
s f(x+h)=10(x+h) +7
Ay f(x+h)-f(x) 10(x+h)+7—-(10x+7)

Hence, H = h h

So, HMZ Lt10 =10

h—0

=10

So dy _ f'(x) =10
" dx
Here y=10x + 7 and it is a linear function in x. We see that the derivative of a linear
function is constant and it is equal to the gradient or slope of the straight line. Here the
derivative is positive (+10). It indicates that both x and y change in the same direction.

d
Example 1.2.: Giveny =7 - 8, find d_i

Solution : Here y = f(x) =7 — 8x. It is again a linear function in x. Here y is an inverse
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function of x. We have y = f(x) = 7 — 8x. Now, x changes by Ax. Let Ax = h.
So, f(x +h) =7 -8(x + h).
Ay _f(x+h)-f(x) _7-8(x+h)—(7-8x)

. — = =-8
AX h h

LYY Y g othes WY o) =8
dx ax-0 AX h»o AX d

Here the derivate is negative (= —8). Thus, in this case, the gradient or slope of the
straight line is negative. A negative sign of the derivative implies that the independent
and the dependent variables change in the opposite directions.

Our examples (1) and (2) show that the derivative of a linear function is constant and
it is equal to the slope or gradient of the straight line. We may prove it by taking a
general equation in linear form. This we have done in example (3) below.

Example3:y=mx+c(m=20, c 2= 0). Find j—i

d f(x+h)—f(x

Solution : We know that -2 = Lt fix+h)-f(x)
dx h-o h

Here,y=f(x) =mx+c(m=0,c 2 0)

A f(x+h)y=mx+h) +c

. f(x+h)—f(x) _m(x+h)+c—(mx+c) _ m. So. dy _ Ltm=m
h h dx h—o
Thus, the derivative of a linear function is constant and it is equal to the gradient or
slope (positive or negative) of the linear function.
Example 1.4 : Determine the derivative of the function y = 3x? + 5x + 6
Solution : Herey =f(x) = 3x> +5x + 6
S f(x+h)=3(x+h)2+5(x+h)+6
. Ay _f(x+h)—f(x) _3(x+h)®+5(x+h)+6—(3x* +5x +6)
CAX h - h
_ 6xh+3h*+5h  h(6x+3h+5)
- h - h

=6x+3h+5

dy . Ay
Lt Lt(6x+3h+5) =
Now, — s A rH( ) =6x+5
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dy iy : .
2 _ (%) is a function of x. Ifx = 1, (1) = 11; ifx =2, f'(2) = 17, etc.

Note that here =
dx

d
Example 1.5. : Obtain the derivative d_z: of the functiony = x3

Solution : Herey = f(x) = x®

L f(x+h) = (x + h)* = X3 + 3x¢h + 3xh? + k3
Ay f(x+a)-f(x) _ (¢ +3x*h+3xh® +h*)-x°
AX h h

_ 3x*h+3xh*+h®
B h

Now,

=3x? + 3xh + h?

dy . Ay _ 2 2y _
Now, o hI;tOR = h|3t0(3X +3xh+h?) = 3x2,

d
So, d—i of the function y = x3 is 3x2.

d
Here also, d_i or f'(x) is a function of x, i.e., f'(x) varies with the variation in the

value of x. Ifx =1, f'(1) = 3. If x =2, '(2) = 12. If x = 3, '(3) = 27 and so on.
Example 1.6. : Obtain j—i wheny =ax?+bx +c

Solution : Here y is a quadratic function of x or a second degree polynomial in x.
w %:Al-lof(x+AA)()z_f(X)

We may write, dy _ o fx+h)—-f(x)
d)( h—0 h

Now, y =f(x) =ax?+ bx + ¢

S f(x+h)y=a(x+h?+b(x+h)+c
Ay f(x+h)—f(x)

" AX h

No

. Putting Ax = h,

_a(x+h)?+b(x+h)+c—(ax’ +bx+c)
- h
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_ 2axh+bh+h?

=2ax+b+h
. ax+b

d
Now, = Lt (2ax-+b+ 1) = 2ax+b

1.5 Rules of Differentiation / Rules of Derivative

There are some rules which can help us to find out derivative of a function. We here do
not offer any proof of those rules. We are just stating those rules which can be applied
only technically to determine the derivative of a function. Some of such important rules
are mentioned below.

d
Rule 1 : If y = ¢ where c is a constant, d—iz 0. This is known as the rule of

differentiation of a constant function. A constant does not depend on any variable. So, if

d
X changes by dx amount, y does not change i.e., dy = 0. Hence, d—i =0

_ dy _ _, dy _
If y = 50(say), then o 0.1fy=y,, i - 0
Taking example from Economics, the total fixed cost(TFC) of a firm in the short run
does not depend on the level of output(q). TFC remains fixed. So, TFC = a (say). So,

dTFC
do

0

d
Rule 2 : If y = ax" (where a and n are constants), d_i = nax™. This is known as the

Rule of Differentiation of a power function.

d
Examples: (i) Ify = 10x4, LA 4 x 10.x+1 = 40x3

dx
d
(ii) Ify = 5%, d—i: 10 X 5.x1%-1 = 5056,
d
(i) Ify = x = X1, d—i: 1xt=x0=1

d
(iv) Ify = 30x, d—i = 1301 =1 x30 x 1 = 30
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ity = 2= g0xr Yo 7510 = 708 = —2
1, d .1
(vi)Ify=;=X1,d—iz—l-X“=—X2=—F,etc.

It may be noted that the earlier result of differentiation of a constant function can be
obtained from this rule of differentiation of a power function. Let y = ¢ where c is
constant. To apply the rule of differentiation of a power function, we rewrite the value
ofyas:y=cx’(asx°=1)

d
Now, d—i =0 x ¢.x%1 =0, a result which we have already stated in Rule 1.

Rule 3 : Sum or Difference Rule of Differentiation

. dy du, dv
If y = u + v where both u and v are functions of x, then ——=—*—
dx dx dx

Examplel.7:

d
(i) y = 105 + 75, Then d—i =3 x 10031 + 5 x 7.x51 = 30 + 35

. 30 40 ! dy . : :
(imy= Y+7' We have to find out g The given function can be re-written as,

y = 30x! + 40x3

dy 30 120
Now, == =-1 x 30x*! + (-3).40.x31 = -30x? - 120x* = ————1
dx X° X
(iii) y = 50x® — 70x?
dy
o 3 x 50.x31 - 70 x 2.x>1 = 150x% — 140x
. 20 50
(My=-77"7%
dy . . .
To calculate ™ of the function, we rewrite the function as, y = —20x2 — 50x-5.
Now we apply the rule of differentiation of power function.
dy 40 250
i —2(-20)x21 — (-5 x 50).x 51 = 40x-3 + 250x6 = = + G

(v) Ify =ax? + bx + ¢ where a, b and c are positive or negative constants,
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dy

—— =2ax+bh
dx
(vi) Ify=a,+ax+ a,x? + a,x3 where a,, a,, a, and a, are constants,
d_y — +2 + 3 2
- At 2aX 3¢,

In general, if y is polynomial of degree n, we have, y = a, + a X + ax* + ... + a X"

" : d
(where a,, a,, a, etc. are positive or negative constants). Then = a, + 2a,X + 3a,x* +

dx
..+ (n=1)a ,x"2+nax"
Forexample,ify:7x5—4x4—3x3+4x2+8x+10—Z+2_¥,
X X° X
dy 7 20 60
——=35x'-16x° -9 +8x+8+ ——F+—
dx X° x° X

Thus, we see that the derivative of the sum (or difference) of two or more functions
is actually the sum (or difference) of the derivatives of two or more functions.

Rule4 : If y = u.v where u and v both are functions of x, dy = d_ulv+d_v.u. This is

dx dx dx
known as product rule of differentiation.

Examples:
(1) y=(3x*+5x?)(10x> + 3x + 9)

d
d—i = (12X + 10%)(L0X2 + 3x + 9) + (20X + 3)(3x* + 5x7)

(i) y = (5% = 4x)(7x® — 3x? + 4x — 6)

d
d—i = (10x — 4)(7x® — 3x2 + 4x — 6) + (21x% — 6X + 4)(5%2 — 4X)

du dv
u - dy &.V —&.u
Rule5: Ify = 5 where both u and v are functions of x, then o
This is known as quotient rule of differentiation.
Example1.8:
7x% +5 d
Q) find =L

9x% +2x+8’ dx



194 NSOU e PGEC-1V

Letu=7x2+5and v =9x2+ 2x + 8

du dv
oo —=14xand — =18x+2
dx dx

U . .
Now, ify = —, then %:M
v

dy _ 14x(9x* +2x +8) — (18x +2)(7x* +5)

So, > >
dx (9x° +2x+8)
N B +7 _dy
(i) Lety = o Axe3” Find i
2 d 3 3 d 2

d (2x°+4x+3)— (X" +7)—(5x" +7)—(2x° +4x+3)
Here _y — dx dx

dx (2x% +4x+3)°

_ (¢ +4x+3)(15x%) = (5X° + 7)(4x +4)
(2x* +4x +3)°

3P +7 . dy
(ii) Lety = o1 . Find i
d .., 2 d

d (2x+1)—@Bx“+7)—-(3x“ +7)—(2x+1)
Here -2 = dx dx

dx (2x +1)?
S dy _ (2x+1) BXx—(3x*+7)x2  12x* +6x—6x°~14 6x’+6x-14
" dx (2x +1)° T 3 +Ax+l X2 +4x+l
Rule6: Ify =f dz = F(x), th OI—yzd—yd—ZTh"k is chain rule of
ule6: If y=1(z) and z = F(x), then Ix dz dx is is known is chain rule o

differentiation or function of a function rule. Let us check the rule.

d
Let y = z2 and again, z = 2x + 1. We can, in this case, directly find out d—iby

expressing y as a function of x and then diffentiating y with respect to x.
Herey=2z2=(2x+1)?=4x>+4x +1
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dy
L= 2 X4+ 4 XL =8x + 4.
dx

Let us see what happens if we apply the chain rule. We have y = 22 and z = 2x + 1.

dz
So, d—y=22 and —=2
dz dx
. . .. dy dy dz
Now, as per chain rule of differentiation, -—=—"—x—-—=2.z2x2=14z
dx dz dx

Putting z = 2x + 1, we get, j_y =4(2x+1)=8x+4
X

This is our earlier result by direct method.

Rule7: Ify=logx, =1
ule7:1fy=logx, 4=~

Rules: Ify=e, 2L —e
ule8: y—e,OIX

Corollary : If y =e™ th d—yze”‘xi(mX)—mX = me™
orollary : Ify =e™ then i i =e™.m=me

Thus, if y = ¥ then d_y: 3ex
Ty ’ dx

Derivative of an inver se function

dy dx
If y = f(x) and its inverse function is : x = g(y) then d%(l@: f'(x).0'(y)=1
0, i or f'(x) = 7v) an dy org'(y) = £(x)

1.6 Concept of Higher Order Derivativesor Higher Order Differentiation

d
Let y = f(x). Thend—i or f'(x) is the derivative, or more specifically, the first

derivative of the function. If we differentiate this derivative again, we get the second
dy d’y

d
derivative. It is denoted by d_x(d_xj or o Similarly, we may get, if possible, third
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d3

y d'y
derivative (dx ] fourth derivative (dx ] etc. These are called higher derivatives.

Let us see how many times a polynomial can be differentiated. Suppose, y = 3x + 1.

d
It is a polynomial of degree 1 or first degree polynomial. In this case, d—iz 3 and

Ql_ﬂ{y
dx®  dx\ dx
can be differentiated twice. Consider a second degree polynomial, say, y = 2x? + 5x + 6.

d d? d(d dy d(d? dy
Here el =4x+5 —y——(dij 4 and d?: ax | dx? =0 The function can not

]= 0. It cannot be differentiated further. So, a first degree polynomial

dx Tdx® dx
be differentiated for still higher order. Thus for a second degree polynomial, we may
get derivative up to third degree. Consider a third degree polynomial, y =3 + 9. Then,
dy d’y d’y d'y

=3x%, =6X, — =6
x e g o G
differentiated maximum 4 times. In general, an n-th degree polynomial can be
differentiated (n + 1) times i.e., we may get up to (n + 1)-st order derivative.

=0 Thus, a third degree polynomial can be

k
Consider another possibility. Let y = ™ where k is a constant (Note that this is not a

first degree polynomial. It can be written as, y = kx*— the value of power of x is not 1,
rather minus one).

d k 2k d?®
Now in this case, L v d_y =2kx’ ==, ay_ —6kx*t =—Bkx4 = —%,
dx dx? x® " dx? x*
d'y 24k
—= —-4-1 = -5 =
e 24 k.x 24Kk.x NG
any order.

We have noted that higher order derivatives can be obtained by the same rule of

d
differentiation. Another point should also be noted. For the function y = f(x), _y or

f'(X) gives us the rate of change of y with respect to x. Similarly, its second order
2

d d
derivative d% or, say, f"(x) gives the rate of change of d—i or f'(x) with respect to x.

Similar explanation may be given for further higher order derivatives.
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1.7 Slopeand Curvature

We first consider the slope of a funcion. Let y = f(x) be a function. It may either be linear
or non-linear, depending on the nature of the function. The slope or gradient of a function

d .
at any point is the first order derivative of the function, i.e., d—i at that point.

1.7.1Slopeof aLinear Function

Sometimes the graphical presentation of a function may be linear. Then the slope of the

linear function will be the tan of the angle between the curve and the horizontal axis on
) d

its positive direction. Ifthat angle is , then the slope of the linear function =tan 6 = d_i :

Example: Let the specific form of the function y = f(x) be y = 3 + 2x. This is a linear

d
function of x of the form : y = mx + ¢. Here, m=2 and ¢ = 3. Its slope = d_i =m. Inour
Y1

- _ dy y =3 +2X

specific linear function, slope = w-m= tan 6 = 2. Its
vertical intercept = 3 which is obtained by putting x = 0.
If x =0, theny = 3 + 2x = 3. In the figure 1.7, we have
drawn the function : y = 2x + 3. We should note that if x
changes by 1 unit, y changes by 2 units. Ifx =1, y =5; if 15 0
x=2,y=7;ifx=3,y =09, etc. Thus, the slople of a (Fig. 1.7)
linear function gives us the change in dependent variable g-
if independent variable changes by one unit. If the slope is positive, the
independent variable and the dependent variable move in the same direction.

In our example, if x rises by 1 unit, y will also rise by 2 units, and if x falls by 1 unit,
y will also fall by 2 units.

We may cite an example from Economics. Suppose our consumption function is :
C =a+ bY where C =consumption, Y = Income. a and b are constants (a > 0, b > 0). We

dC
assume that 0 < b < 1. Here, slope = v tan 6 = b. It implies that if income (Y) rises

dC
by 1 unit, consumption(C) rises by b units. In Economics, b(Z d_Y] is called the marginal

propensity to consume (MPC).
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d
So far we have assumed that the function y = f(x) is positively sloped i.e., its d_z: or

f'(x) > 0. It means that x and y change in the yA
same direction. However, it may happen that there

is an inverse relationship between x and y. In that
case, if x rises, y will fall and vice versa. Then ~.
the function will slope downward from left to A
right. Let us assume that the slope of the function 10

is negative or the function is negatively sloped

and it is linear. Ifa functiony = g(x) is represented < 0
by a downward sloping straight line, then the

slope of the function is negative. For example, (Fig. 1.8)
1
lety=g(x) =10 - 5%
: : dy 1 : -

Here, vertical (y) intercept = 10 and slope = ol _E< 0. Graphically it will be a
downward sloping straight line with vertical (y) intercept = 10 units and horizontal (x)
intercept = 20 units. In terms of our figure, slope = tan (180° — ) = —tan 6 =
oA_W_ 1 It implies that in thi if X rises by 1 unit ill fall b 1 it

OB 50 o - [timplies that in this case, if x rises by 1 unit, y will fall by - uni

and vice versa.
We cite an example from Economics. The law of demand states an inverse relation

between price (p) and quantity demanded (q). So, q = f(p) such that j—g =f'(p) <O0. Let

the specific equation of the demand function be, q = 200 — 4p. It is a downward sloping

straight line with quantity(q)- intercept = 200. Here Q4
I 9 4 < 0. Graphically, sl tan (180° Al
slope = .~ =—4<0. Graphically, slope = tan
Pe= 4o phically, slop q = 200 — 4p
o 200
—0)=—tan O = _OA _ _200__ 4. 1t implies that
OB 50 ---..180°-0
if p rices by one unit, quantity demanded(q) will fall | O\ ™ D
by 4 units and vice versa. In the figure 1.9, we have 0 —5 B
drawn the specific demand function : g = 200 - 4p.
(Fig. 1.9)

We may mention the value of slope of a function
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under two special cases. If y = c where c is a constant it can be represented by ahorizontal

d
straight line with a vertical (y) intercept = c. Its slope = d_i: 0 asdy =0, dx = 0.

Graphically, slope = tan 6 = tan 0° = 0 (fig. 1.10). If x = k where k is a constant, its can
be represented by a vertical straight line. Its horizontal(x) intercept will be k (fig. 1.11).

d
It slope = d_i = o (as dx = 0 and dy = 0). Graphically, slope of this vertical straight line

=tan 0 =tan 90° = .

Y4 Y4
y=c
c{ .90°
> X U > X
0 0 W’
(Fig. 1.10) (Fig. 1.11)

1.7.2 Slope of a Non-linear Function

So far we have considered slope of a linear function. Let us consider the slope of a
curve. Let y =f(x) = x2. It represents a curve. In figure 1.12, we have shown the shape of
this curve taking only the positive values of x. Slope
of a curve at every point is different. However, slope y .,
of a straight line is the same at all points. In the case of B/Y=X
a non-linear function or curve, slope at any point is  2Y A 1Y
equal to the slope of the tangent drawn at that point. AX
Hence, in our figure 1.12, slope of the curve at A =
slope of the portion AB where AB is very very small 0

AX
(AB —0)= Lt ﬂ=d—y—slo e of the tangent at A= °

T acoAx dx P 9 = (Fig. 1.12)

tan 6 where 0 is the angle between the tangent and the x axis on its positive direction.
Here slope of the curve is positive in the first quadrant (x > 0).

Now, suppose the function y = f(x) represents a non-linear inverse relation between
x and y. In this case, the function depicts a downward sloping curve as shown in the
figure 1.13. Here the slope of the curve is negative. Its slope of the portion AB =

>X

= slope of the tangent at A = tan(180° — 0) = — tan 6. Here slope of the
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curve is negative. We take a simple example. Lety = Y1
k
f(x) = M where K is a positive constant (k > 0).
A
Then, xy = k and we know that it can be represented  Ay| Ay[\ g
by a rectangular hyperbola. Now the slope of this Ax] )
y=1X
dy __K \v\
i int=—=——-5<0j 180°-0
function at any point i 2 , i.e., the slope ~ X
of the given curve is negative. (Fig. 1.13)

1.7.3 Curvature of a Function
In order to know the curvature of a function, we have to consider the change in its slope

. d(dy dy . o .
e, 72| 5o | or, =5 . Alinear function or straight line has no curvature. Its slope is
dx \ dx dx

d(dy) d _ _
constant and so, d_x(d_x] or d% = 0. Again, consider the curvature of the curve drawn
in the figure 1.12. If we go from left to right on this curve, its steepness rises. If we draw
tangent at different points on this curve going from left to right, the tangents will be
steeper and steeper. The equation of the curve was : y = x2. So, its slope at any point =

d

d—i =2X ., Thus, the slope of the function depends on the value of x (i.e., a function of
) . . . _ d (dy) d%

X). As X rises, slope rises and vice versa. Mathematically speaking, ax L dx :_dx2

d
=2>0. This implies that d_i or slope rises. Here the curve is convex upward. Again, in

k
the figure 1.13, the slope of the curve is negative. The equation of the curve is : y = ™

d k . .
and hence d_i =z <0. As x rises, the absolute slope of the curve falls. Considering

the negative magnitude we shall say that its slope rises as x rises. Mathematically
2

. . _d(dy) dy_. _,,_2k dy
speaking, change in slope = d_x(d_x] arvo 2k.x21 = - Thus, for x > 0, o >0

.e., the negative slope rises or absolute slope falls. Here the curve is convex downward.
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We may mention the following cases of curvature of the function y = f(x). We here
consider the case when x rises through ‘a’ and the shape of curve at x = a.

A. Casesof an upward rising function

(1) f'(a) >0, f"(a) =0, the curve is upward rising linear.
(i) f'(a) >0, f"(a) > 0, the curve is upward rising convex.
(iii) f’(a) > 0, f"(a) < 0O, the curve is upward rising concave.

B. Cases of a downward sloping function

(iv) f'(a) <0, f”(a) = 0, the curve is downward sloping linear.

(v) f'(a) <0, f"(a) > 0, the curve is downward sloping convex.

(vi) f'(a) > 0, f"(a) < 0, the curve is downward sloping concave.

We have shown the shape of the curve of case (i) in the figure 1.7, the case of (ii) in
the figure 1.12, the case of (iv) in the figure 1.8 and the case of (v) in the figure 1.13.
The shapes of the curve in case (iii) is shown in the figure 1.14.

Here the curve is upward rising concave. \We see that as x increases, tangents become
flatter and flatter, though tangents are upward rising. Thus, slope of the curve is positive
but diminishing. Here the curve is said to be upward rising concave.

The case of (ii) i.e., the shape of a downward sloping concave curve has been shown
in the figure 1.15.

Y Y 1

y =f(x)

y =f(x)
>X

(Fig. 1.14) (Fig. 1.15)

Here we see that tangents at different points on the curve is negatively sloped. So,
the slope of the curve y = f(x) is negative. Again, as X rises i.e., as we move from left to
right, the tangents become steeper and steeper or absolute slope rises. But here slope is

2

d . .
negative. So we shall say that slope falls, i.e., d% <0. Inthis case, the curve y = f(x) is

said to be downward sloping concave.
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1.8 Multivariate Functions and their Derivatives

A function having more than one independent variable is called multivariate function.
If the independent variables are x, X, ... X, then the general form of a multivariate
functionis : y = f(x,, X,, ..., X).

In our previous discussions on function, we took a single independent variable x and
the function was written as, y = f(x). That function may be called univariate function as
the number of independent variable in this case is unity. If the number of independent
variables is two, it is called bivariate function. A bivariate function is a special case of
multivariate function where the number of independent variable is two. It is written as,
y = f(x,, x,) where x, and x, are two independent variables and y is the dependent
variable.

Differentiation of a multivariate function, say, y = f(x,, X,) can produce three types
of derivatives, namely, partial derivative, total derivative and total differential. WWe explain
them one by one.

1.8.1 Partial Derivative:

Suppose we have a multivariate function y = f(x;, x,). Now, it may happen that the
value of x, also depends on the value of x,. In that case a change in X, will have two
effects ony. First, there will be a direct effect of change in x, on y. Second, there will be
an indirect effect via x, i.e., change in x, will affect x, and in turn, change in x, will
affect y. If we like to know the direct effect and ignore the indirect effect, then we have
to differentiate y with respect to X,, assuming X, as remaining unchanged. This process
of differentiation is called partial differentiation and the result gives us partial derivative.
Thus partial derivative in a multivariate function involving two or more independent
variables is the derivative with respect to one of the variables, treating all other independent
variables as constants. Thus, in the multivariate function y = f(x,, X,, ..., X,) having n
independent variables, we have n number of partial derivatives. They are written as

Y ey oy or more popularly denoted by simple symbols, suchas, f,, f,, ..., f,

8%, X, X

respectively. Ina bivariate function y = f(x,, X,), we have two partial derivatives, namely,

S—yand ;S_y Again, they are denoted by f, and f,, respectively. They are called first
Xl X2

order partial derivatives with respect to x; and x,, respectively. When we change only
one variable, treating others as constants, the multivariate function becomes a function
of a single variable. Hence, the same rules of differentiation of a function of single

variable are also applicable in the case of partial differentiation.
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Example 1.9 : Let us give some examples of partial differentiation.
(i) Lety = f(x,, x,) = 10x, + 5X,. Obtain f, and f,.
1 We have, y = 10x, + 5X,

Y 11 O _ ¢ _gyui_
X f,=10.x, =10 ox, 2
(ii) Let y = x? +3x,x, +8x%5. Find f, and f,.

O We have y = x? +5x,X, +8x>

Now, f, =Y —3x3 £ 5x\x, = 3x2 +5x,
Xl

Similarly, f, = ;73’ =5.X; " +2.8x;" =5x, +16X,
2
We should note that while calculating partial derivative with respect to a particular
variable, we treat other variables as constant. To signify this the symbol ‘6’ is used
instead of the notation ‘d’. Further, partial derivatives may be themselves functions of
the same independent variables as the original function. In our last example, we see that

f =3x%+5x, =f(x,,%,) and f, = 5x,_+ 16x, = f,(X,, X,).
Partial derivatives have important uses in Economics. From the first order partial
derivatives, we get marginal values. For example, let the utility function be, u = f(x,, X,,

..., X.) where x;, X,, ..., X, are the quantities of n goods, respectively. Here, S—U or f,is
Xl

. - . . . ou
the change in total utility (u) due to one unit change in consumption of x,. Hence, Foy
Xl

or f, is nothing but the marginal utility of x,. Similarly, STU or f, is the marginal utility
2

(MU) of x, and so on. In general, S—U or f.is the MU of the i-th commodity (i=1, 2, ..., n).
X.

Similarly, partial derivative of the production function with respect to a particular
input will give us the marginal productivity of that input. For example, let the production
function be : q = f(K,L) where g = total product or output, K = amount of capital and L

) _ .
= amount of labour. Now, 8—2 or f, is the change in total product due to one unit change



204 NSOU e PGEC-1V

d
in K i.e., marginal productivity of capital. Slmllarly, 4 orf is the marginal productivity

of labour.
1.8.2Total Derivative

Let the bivariate function be : y = f(x,, X,). Now suppose that x, and x, are interdependent.
Then, a change in x, will have a direct effect on'y and an indirect effect through x,. If we
like to consider both the direct effect and indirect effect i.e., the total effect of change in
X, and x, on 'y, that effect can be known from total derivative. Thus, total derivative of
a multivariate function with respect to one independent variable is the sum of both
direct effect and indirect effect(s) through other variable(s). For example, let the utility
function of the consumer be : U = f(q,, g,) where g, and g, are the quantities of two

goods. Then total derivative of U with respect to q, is given by : a = y+£ a9,

dg, oq, oq, da,

. du dq
Using simpler symbol, —=f +f .—%
g simpler sy dql 1+ aa,
d
Similarly, 39 - 4 9% U _ ¢ 04

dg, og, da, 6q2 ? Tdo,

In both expressions, the first term is the direct effect while the second term is the
indirect effect.

In this example we have assumed that independent variables are interdependent, i.e.,
a change in one independent variable affects the other. There may be another type of
linkage between the independent variables. Suppose the bivariate function is :
y = f(x,, X,). Also suppose that both x, and x, depend on t (time) i.e., x, = g(t) and

d
X, = h(t). We like to know the rate of change of y due to a change in ti.e., to know d_)t/ :

d
This & is called the total derivative of y with respect to t.

dt
Here, change in t does not affect y directly. A change in t affects x, and x, and
dx
changes in x, and X,, in turn, affect y. Now, when t changes, the change in X, is d_tl

Sy
Again, change in x, only brings a change in 'y by Sx. - So, change in y due to change in
1

By dx
t is given by 5%, dt Similarly, change in y due to a small change in t via only X, is
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dy dx
given by 87d_t2 So the ‘total’ change in y due to a small change in t (say, dt) is :
2
dy &8y dx, oy dx, d dx, dx
P dtl +8x qt - Or using a simple symbol, we have, d_)t/ fE z'd_tz'
1 2

d
This ( dﬂ is our total derivative of y with respect to t. It gives us the rate of change of

y due to a change in t.
Example 1.10 : Let us give a simple example. Let y = f(x,, X,) = 3X, + 4X,.

d
Further, x, = g(t) =t2+ t + 1 and x, = h(t) = t> + 3t + 1. We have to find out d_)t/

Solution : We k tht—Oly —f—dX1+f &,
ution : We know adt_ldt > gt
oy oy
Now, in our example, 1 ox, and "2 5,

dx, dx,
Again, x, =t?+t + 1. So, E =2t+1.Further, x, = t2 + 3t + 1. So, F =2t+3.

Putting these values in the expression of 2_)'[/ we get,

d dx dx
—y=f1—1+f2-—2 =3(2t+1)+4(2t+3) =6t +3+8t+12=14t + 15
dt dt dt
Check : We may get the same result if we put values of X, and x, in terms of t in the

expression of y and then directly differentiate y with respect to t. Obviously, the result

d
will give us the value of d_)t/ We have, y = 3x, + 4x, = 3(t2 + t + 1) + 4(t> + 3t + 1)

or,y=3t>+ 3t + 3+ 4t2 + 12t + 4 = 7t + 15t + 7. Thus, y becomes a function of t.

d
L = 14t + 15. We got the same result

Applying power rule of differentiation, we get, at

: dy
using the formula of T
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1.8.3Total Differential of a Multivariate Function

By total differential of a multivariate function we mean the total change in the
dependent variable due to change in all the independent variables when independent
variables have no interdependence among themselves. Let the multivariate function
be 1y =1(x,, X,, ..., X,) where x,, X,, ..., X, are independent. Now, the rate of change ofy

due to a small change in Xx,, keeping other variables as constant, is g—y or in short
X

symbol, f,. If the amount of change in x_ is dx,, then the amount of chanlge iny due to
change in x, only is given by f .dx,. Similarly, if x, changes by dx,, the amount of
change in 'y is given by f..dx,, and so on. So, total change in'y, say, dy due to change in
all n independent variables will be equal to :

dy="f dx, + fdx, +.. +f dx.

dy is called the total differential of the functiony = f(x, x,, ..., X).

If we take a bivariate function where y = f(x,, X,), then if x, changes by dx, and x,
changes by dx,, then the total change in y(denoted by dy) is given by :

dy =1, dx, +f,dx, = %.dxl +%.dx2

dy is called the total differential of the function : y = f(x,, x,).

Example 1.11 : (i) Find the total differential of the function : y = 2x? +3x,

oy
Solution : From the given function, we get, f, = 7 = 4x, and f, = S—y =3.
1 X2
So, total change in y is : dy = f.dx, + f,dx, = 4x,dx, + 3dx,
(i) Find the total differential of y wheny = S, 4x3
Xl
Solution : From the given function, we get, f, = v —% and f, :s—y =3.4.x "=
1 Xl X2

12x3. Then, total differential of y, say, dy = f,dx, + f,dx,

or, dy = —%.dx1 +12x2.dx,
X

1

1.8.4Rules of Total Differential

The rules of total differential are strikingly similar to the rules of derivative of a univariate
function.
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Rulel: If y = k where k is a constant, then dy =dk =0

Rule 2 : If y = ku" where u is a function of x,, then dy = d(ku") = nku™*. du

Rule3: Ify =u+vwhere uand v are two functions of x, and x,, respectively, then
dy=d(uxv)=duzdv

We may generalise this rule. Ify =u £ v = w, thendy = d(u £ v+ w) = du = dv + dw.

Rule4 : If y = u.v where u and v are two functions of x, and x,, respectively, then
dy = d(u.v) = v.du + u.dv

We may generalise this rule. Let y = u.v.w. Then dy = d(uvw) = vwdu + uwdv +
uvdw

Rule5: If y = Ywhere u and v are two functions of x, and x,, respectively, then
v

E] _ v.du-udv

v 2

dy:d(
Y

1.9 Higher Order Partial Derivatives

Simply speaking, higher order partial derivatives are the derivatives obtained by repitition
of partial differentiation. When we repeat the process of partial differentiation, we get
the higher order partial derivatives. We know that partial derivatives of a function are
generally functions of the same variables of the primary or primitive function. Thus, if
y = f(x,, X,) then the first order partial derivatives are also generally functions of x, and
. (_ dy ]_ (_ Y% ]_ .
X, 1.6, | =—|=1(x, x,) and f,| =—|=1,(x,, X,). In this case, we can repeat the
OX, X,

process of partial differentiation and get higher order partial derivatives. This will hold
so long partial derivatives are functions of the same variables as in the primitive or
primary function. When the partial derivative after some repititions of partial
differentiation ceases to be a function of the same variable, further higher order partial
derivatives are not obtainable.

Example1.12: (i)  Lety= 3x?+4x_x2. Obtain higher order partial derivatives.

Sy %

Solution : Here fi :6_x1: 6x, +4x; and f; :E: 8x,X,. Now, second order partial
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2 2y
derivative of y with respect to x, is : 2732/ =f, =6 and a =T, =8X, Heref, =6isa
1

5%y
constant. So we can further differentiate it only once, i.e., el =0 1t cannot be
1

3

differentiated further. Similarly, in our example, 6720. So, it cannot also be
2

differentiated further.
(i) Find f,, and f,, for the function : y = (x, + 4x,)?

Solution : Here oy - f, = 3(x, + 4x,)? and oy = f, = 3(x, + 4x,)2.4.

X, oX,

0 ooy | o
Now, f, =—(f)=—| — |= =L =3 x 2 (X, +4x,)' = 6(X, + 4x
o ® axl[axlj 5 (% + 4%)! = 6(x, + 4x,)

5 5 (oy )| 0%
Similarly, f,, = 7, (f,) = o, ( ox, }: ox2 = 2% 120+ )14 = 96(x, + 4x,)

We can repeat the process of partial differentiation further. The process will stop at
the step when the value of higher order partial derivative becomes zero.
(ii) Let z = 3x + 5y. Determine Z, and Z,,

Solution : Here, z = 3x + 5y.

0z 0z
So, Z, " and <4y Y
0 0 ( o0z 0%z
L 0 _o0foz) _ 8_22_
Similarly, z, za(zy)_ 5(5] = Y =0

In these examples we have f,, or f, and f,, or f . These are called direct second order
partial derivatives. But there may be other type of partial derivatives. We may want to
know the change in f, due to change in x, or to know the change in f, due to change in
X,. Insymbols, we may want to know f,, or f,,. Consider the functiony = f(x , x,). Here
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we have two independent variables : x, and X,. By the process of partial differentiation,

oy oy

. : . f of
we get two first order partial derivatives, say, o or — orf and —or — orf,.
oX, 0X, oX,  OX,

Now, these first order partial derivatives f, and f, are generally functions of x; and x,

e, f, = f,(x,, X,) and f,(x,, X,). So, we shall get four second order partial derivatives.
They are :

a_fl_ﬂ(%]=az_y_f of, _ 0 (ay}=62y_

ox, ox \ox, ) Xt Hroax, ox,\ox,) o 2

of, ooy &y of of (oy) oYy

~ - = SElpand =0 40 | =0 |F =fy
oX, OX \ OX, ) OX,0X, OX, OX,|0X, ) 0OX,0X,

Among these four second order partial derivatives, the first two, f,, and f,,, are called
direct second order partial derivatives and the last two i.e., f,, and f,,, are called cross
second order partial derivatives or mixed partial derivatives. Thus, if the multivariate
function has two independent variables, we have four second order partial derivatives
(2 direct and 2 cross). If the multivariate function has 3 independent variables, we have
9(= 3?) second order partial derivatives (3 direct and 6 or 32 — 3 cross derivatives) In
general, if the multivariate function has n independent variables, it will have n? second
order partial derivatives (n direct and (n? — n) cross or mixed derivatives).

One important result about cross partial derivatives is that if f, and f, are all continuous
and smoth functions of x, and X,, then cross-partial derivatives will be equal i.e.,
f,, = f,,. This is known as Young’s Theorem.

Example1.13: (i)  Let y=4x®-3x}x,+10x;. Find f,, f,,, f, and .

Solution : Here, f, :ﬂzlzxf —6x,x, and f, :ﬂ:—sxf +30%;
0X, 0X,
2
Now, f, sa—flsﬂ oy 58_32/ = 24x, - 6X,
OX, OX \ OX, ) 0OX;

2
Similarly, f,, = sfz = 88 (jy ]Eg 32/: 2 x 30.x2" = 60X,
X2 X2 X2 X2
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. 0 o (0
Again, 267<f2>557(_y]5
1

. 0
Again, f,, = f)= =-6x%,(1) =-6x
gain, 1, = ()= [ ]MX (M
It should be noted that f,, = f,, = — 6x, i.e., Young’s theorem holds.

(i) Given z = 5x%y — 20xy + 8xy3 Obtam f. and f and check whether Young’s
theorem holds (or check whether cross-partial derivatives are equal or not).

Solution : We have, z = 5x3y — 20xy + 8xy® = (X, y)

Here f = g_z = 15x%y - 20y + 8y* and f, = 2—2 = 5x3 — 20x + 24xy?
X X

2
Now, f_ =2 (fx)sﬁ(@]sE = 30xy,

b X ox\ox ) ox?
0z\ 0%z
and f, ——( )= (—]———sz4xy21—48xy
oy\oy ) oy’

Now we con3|der the values of f, and f, i.e., the values of cross-partial derivatives.

f =i(f)=i z)_ o7 ) 2
Xy T y/ = _6x6y_15x —20 + 24y

f _ 9 (f)——8 (62] o'z 15x2 — 20 + 24y2 = f
= = = - + =
"oy ayox ~ =y

Thus, cross-partial derivatives are equal, or, in other words, Young’s theorem holds.

1.10 Homogeneous Function

Mathematically speaking, a function y = f(x,, X,, ... X.) is said to be homogeneous of
degree k if (Ax,, AX,, ... AX)) = AKy. Thus, in language, a function is sand to be
homogeneous of degree k if multiplication of its each independent variable by a constant
A changes the value of the dependent variable i.e., the value of the function by Ak times.
On the other hand, if A cannot be factored out, the function is said to be non-
homogeneous. The power of A i.e., k is called the degree of homogeneity. Thus, a bivariate
function y = f(x,, X,) is said to be homogeneous of degree k of f(Ax,, AX,) = Aky. The
degree of homogeneity of a homogeneous function can easily be calculated by a simple
technique. For a homogeneous function, the sum of indices for each term of the function
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is the same and the sum of indices will be the degree of homogeneity. Thus, y = x? +x3,

13
2 2 T ; ; ; ;
y =3X; +2XX, +4X;, y=xixs are homogeneous functions. The first function is

homogeneous of degree 3, the second function is homogeneous of degree two while the last
function having only a single term is homogeneous of degree 1. Let us check our statement.

To consider the degree of homogeneity of the function, y = x? +x3, we increase the
independent variables by A times. The new value of y, say, y* = (Ax,)® + (AX,)® =
A% (¢ +x3) = A3y. Thus, the given function is homogeneous of degree 3. For the second

function, y = 3x? +2x,x, + 4x2, we increase x, and X, by A times. The new value of y =

y* (say) = 3(AX,)? + 2(AX,)(AX,) + 4(AX,)* = A2(3X,% + 2X X, + 4X,2) = A2.y. Thus the given

function its homogeneous of degree 2. Let us consider the degree of homogeneity of the
1 3

third function, y =X{x4 . If we increase both x, and x, by A times, the new value of y,

1 3 1 3

say, y*=(Ax,)*(Ax,)* = ;ﬁ%xlzxzi = ALy = Ay. Thus the given function is
homogeneous of degree 1. It is also called linearly homogeneous function.

On the other hand, functions like y = X} + X}, y=X; + XX, + X5, ¥ = X, X, + X, + X,
are examples of non-homogeneous functions. Homogeneous functions have many
applications in Economics. We shall consider some of them in our next unit.
Example1.14 : (i) Determine the degree of homogeneity of the function, z = ax? + by?.

Solution : We increase both the independent variables x and y by A times. The new
value of z, say, z* = a(Ax)? + b(Ay)? = A%(ax® + by?) = A%.z. Hence the degree of
homogeneity of the given function is 2.

(i1) Let the function be : q = ak*L!-. Determine its degree of homogeneity.

Solution : We increase the values of K and L by A times. The new value of q = g*(say)
= a(Ak)*(AL)o = po+l-o gke -« = A1.q = Ag. Hence the given function is homogeneous
of degree 1.

(iii) Suppose the bivariate function is: y = Ax?x? . What is its degree of homogeneity?

Solution : We increase both x, and x, by A times. the new value of y, say, y* =
AMX)HAX,)P = AP, Ax *x,P = L**P. y. So, the given function is homogeneous of degree
(ot ).

(iv) Determine the degree of homogeneity of the function : z = ax?> + by? + c.
Solution : Raising x and y by A times, we get the new value of z, say, z* = a(Ax)? +
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b(Ly) + ¢ = A%ax? + Aby + c. Here, A cannot be factored out. So the given function is
non-homogeneous.

1.11 Euler’s Theorem on Homogeneous Function

The Euler’s theorem states that if a multivariate function y = f(x,, x, ..., X,)

oy oy

oy
i X, —+X, —+..+ X .—=k.
is homogenous of degree k, then " ox, 2o, "X y
Using alternative notation, the Euler’s theorem states that

of of of
X, —+ Xy, —+. A X, — =
0X, oX, oX,
If we use symbols for partial derivatives, we may write the Euler’s theorem as
follows :
xfi+x.f+.. +xf =Ky
We shall prove this theorem taking a bivariate function involving two independent
variables x, and x,. However the result can easily be generalised for n number of
independent variables.
Now, in our case, y = f(x;, X,). We assume that this function is homogeneous of

oy oy

k.f

degree k. So we have to prove that X1'6_+X2'a_ =Kk.y or, using f for y, we have to
Xl X2
of of : : : —
prove that Xl'a_+ xz.a— = kf or, using the notation of partial derivative, we have to
Xl X2

prove that x,.f, + x,.f, = k.y.

Proof : Our given function is : y = f(x,, X,). This function is assumed to be
homogeneous of degree k.

Hence, by definition of homogeneous function, we may write, Aky = f(Ax,, AX,)

x

Putting A = L , We get, ik.y = f[l, —2]
X X,

Xl 1

Ly= xfd{%} where f(l,%] = 4{%) (1)

Differentiating both sides of equation(1) with respect to x;, we get,
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gﬁ _or_ kxf‘l.d)[x—zj ; xf.¢'(ﬁ](—x—gj
X, OX, X, X, X]

Multiplying both sides by x,, we get,
xl.ﬂsxl.ﬂzkxf.q)(&]—xf.q)’[&].& - (2)
X

OX, OX, 1 X, ) X,

Again, differentiating (1) with respect to x,, we get, oy sa—f =X ¢’ X2 .i
oX, OX,

Multiplying both sides by x,, we get,
X .ﬂsx .a—f:xf.d{ﬁj.& ..(3)

2 2
OX, OX, X, ) X

. f
Adding (2) and (3) we get, xl.ﬂ + xz.ﬂ =X,. o - xz.a—
0X, oX, 0X, oX,

= kxf.q)[%] = ky [from(1)]

1

This proves our theorem. In the similar fashion, we can generalise the theorem for n
independent variables.

Example1.15: (i) Check whether Euler’s theorem holds for the function, y = 3x +5x;

Solution : Here the given function y = 3x? +5x2 is homogeneous of degree 2. If we
increase both x, and x, by A times, the new value of y, say, y* = 3(Ax,)? + 5(AX,)? =
A% (3x? +5x2) = A2y. So the given function is homogeneous of degree 2. Now, the Euler’s
theorem states that if y = f(x;, X,) is homogeneous of degree n, then

xl.ﬂ+x2.a—y=ny. So, in our context, the Euler’s theorem will hold if
0X, 0X,

oy oy oy

. 0
X;.——+X,.—— =2y . Let us examine it. Here — =2x3x, and Y _ox 5X,
X, X, 0X, 0X,

Now, X, 4%, -2 = 243x? +2x5x2 = 2(3x? +5x2) = 2y
0X, OX,
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Thus, in this case, Euler’s theorem holds.

(i) Let z = x® + 3x?y + 3xy? + y2. Prove that X'%er'f_ﬂz/: 3z

Proof : We have, z = x3 + 3x?y + 3xy? + y3 = (X, y)
0z

0z
Now, X 3x? + 6xy + 3y? and 5 = 3x? + 6xy + 3y?

0z oz
Now, LHS = X-a—Xﬂ/-@ = (3x3 + 6x%y + 3xy?) + (3x?y + 6xy? + 3y°)

= 3x3 + 9x%y + 9xy? + 3y3 = 3(x® + 3x?y + 3xy? + y?) = 3z = RHS.
[Note : Here the degree of homegeneity of the given function is 3. Hence, as per

Euler’s theorem, X.Z—Z+y.g = 3z7]
X

(iii) Let z = x*y*~. Prove that x.z, +y.z =z
Proof : we have, z = x2y*«

Now, z, . axelyl-eand z, = o2 (1 - a)xey=
OX Yoy

Now, LHS = x.z, +y.z, = X(ax** y*) + y(1 - a)x* y
= axeyre + (1 - o)xe yre=xeyle (o + 1 - o)
= x*yl*=z=RHS (Proved)
Actually, here the given function is homogeneous of degree 1. Hence the Euler’s
theorem holds.

(iv) If y =x?x>, prove that x,.f, + x,.f, = (a. + B)y.
Solution : We have, y =x?x}

oy 1 _ oy B-1
Now, f, SV ax'xb and f, =——=B.x!X;
1 2

S F X E, = axEXE +BxyxE = xPxE (o +B) = (o + B)y = RHS (proved)

[Note : Here the given function, y = x¢x} is homogeous of degree (o + 8). So as per

oy oy
Euler’s theorem, Xl-a_)(lJsz-&: ny = (o + B)yl.
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1.12 Concept of Homothetic Function

Homothetic function is a generalised class of homogeneous function. Thus, if Q =
f(K, L) is a homogeneous function, then z = F(Q) = F[f(K, L)] is homothetic if :—é >0.

In other words, a homothetic function can be derived from a monotonic transformation
of a homogeneous function. Ahomothetic function may not be a homogeneous function.
For example, let Q = aK + bL. Here Q is a homogeneous function of degree 1 [If we
increase K and L by A times, the new value of Q, say, Q* = a(AK) + b(AL) = A(aK + bL)

=ALQ =1Q]
. . dz
New, let z=aK + bL + ¢ where c is a positive constant. Thenz =q + c and a =1>0,

Hence, z is a homothetic function which is a monotonic transformation of the
homogeneous function, Q = aK + bL. However, z = aK + bL + ¢ (c > 0), though
homothetic, is not a homogeneous function.

1.13 Summary

1. DEFINITION AND TYPES OF FUNCTIONS

Functions are mathematical expressions showing dependency between two variables
or among more than two variables. Functions may be of different types, such as constant
function, linear function, quadratic function, cubic function, or, in general, polynomial
function of degree n.

2. CONCEPTS OF DERIVATIVE AND DIFFERENTIATION

The concept of derivative gives us the rate of change of the dependent variable when
the independent variable(s) changes (change) infinitesimally. The act or technique of
finding out the value of derivative is called differentiation. These are some standard
rules of differentiation or rules for finding out derivative of a function.

3.CONCEPT OF HIGHER ORDER DERIVATIVES OR HIGHER ORDER
DIFFERENTIATION

When a function is differentiated for the first time, the resultant derivative is called the
first order derivative. If we repeat the process of differentiation, we shall get higher
order derivatives. Thus, the second order derivative is the derivative of the first order
derivative; a third order derivative is the derivative of the second order dervative, and
so on. The process of differentiation will reach the final stage when the derivative
becomes a constant function. Its further differentiation will give the value zero and the
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process of higher order differentiation stops. If y = f(x) then its first order derivative,

d
denoted by d—z gives us the rate of change of the dependent variable(y) due a very

small change in the independent variable (x). The second order derivative of y, denoted

d(dy) d¥y dy
by —— ax\dx ) O 77 o gives us the rate of change in ™ due to a very small change is x.

LK ay d_y and so on.

Similarly we can interprete —= NI

4. SLOPE AND CURVATURE

Slope of a linear function is the tan of the angle between the line and the horizontal(x)
axis on its positive direction. Slope of a non-linear function at any point on it is the tan of
the angle between the tangent at that point and the horizontal axis on its positive direction.

If y = f(x), then the slope of the function is measured by its first derivative i.e., ™

The curvature of a function can be known from the sign of the second derivative

dy d
(d?] i.e., change in the value of d_i or of the first derivative.

5. MULTIVARIATE FUNCTIONSAND THEIR DERIVATIVES

A function having more than one independent variable is called a multivariate function.
A special case of multivariate function is the bivariate function which has two
independent variables. When a function has one independent variable, it may be called
univariate function. By function we simply or generally mean this univariate function if
not otherwise mentioned.

In the case of multivariate function, we have three types of derivatives, namely,
partial derivative, total derivative and total differential. The rules of finding out these

. d
derivatives of a multivariate function are very much similar to those of finding out d—i

in the case of a univariate function.
6. HHGHER ORDER PARTIAL DERIVATIVES

Higher order partial derivatives are simply the derivatives obtained by repitition of
partial differentiation. In the case of univariate function, we get higher order derivatives
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just by repeating the process of differentiation. Similarly, in the case of a multivariate
function, if we repeat the process of partial differentiation, we get the higher order
partial derivatives.

7.HOMOGENEOUS FUNCTION

A function is said to be homogeneous of degree k if multiplication of its each independent
variable by a constant A will change the value of the function by the proportion AX. In
symbols, the multivariate function y = f(x,, X,, ..., X,) is said to be homogeneous of
degree K if f(AX,, AX,, ..., AX)) = AKy.

8. EULER’'STHEOREM

Euler’s theorem states that if a function is homogeneous of degree k, then the sum of its
all partial derivatives multiplied by the corresponding variable will be equal to the
function multiplied by k. In symbols, if y = f(x,, X,, ..., X.) is homogeneous of degree k,

f f f
then Euler’s theorem states that xl.a—+ x2.6—+ ot xn.a— =k.f
0X, 0X, oX,
Or, using alternative notation, xl.ﬂ+x2.ﬂ+... +xn.ﬂ =ky.
0X, 0X, oX,

This theorem has important applications in various economic concepts.
9. HOMOTHETIC FUNCTION

A homothetic function is a generalisation of homogeneous function.

1.14 Key Concepts

1. Function : Two variables are said to be functionally related if for a particular value of
one variable we get a particular value of the other.

2. Dependent variable : The variable whose value is dependent or determined by the
value(s) of independent variable(s) is known as dependent variable

3. Independent variable : The variable whose value is determined independently of or
outside the system, is called independent variable.

4. Variable : Variable means anything whose value varies or changes.

5. Polynomial equation : Polynomial equation is an equation by which, in general,
several terms in an independent variable are raised to various powers. The degree of the
polynomial is the highest power to which the independent variable is raised.
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6. Linear Function : Linear function is a mathematical relationship in which the
variables appear as additive elements, with no multiplicative or exponential components.
The general form of a linear function is : a, + a,x, + a,x, + ... +a x = 0.

7. Quadratic equation : Quadratic equation is an equation which involves the square
of a variable as the highest power. The general form of a quadratic equation is :
y = ax? + bx + ¢ where a, b and c are constants.

8. Cubic equation : A cubic equation is an equation in which the highest power of an
independent variable is three (i.e., its cube). For example,y =a, + ax + ax* + a;x3is a
cubic equation (provided a, # 0)

9. Rational function : A function expressed as a ratio of two polynomial functions, is
known as rational function.

10. Rectangular hyperbola: Rectangular hyperbola is such a curve that the area of all
the rectangles obtained by joining abscissa and ordintate of all points on this curve is
constant. The equation of a rectangular hyperbola is : Xy = k where k is a constant.

11. Algebraic function : Any function expressed in terms of polynomials and/or roots,
such as, square root of polynomials is an algebraic function.

12. Derivative : The change in the dependent variable of a function per unit change in
independent variable, calculated for an infinitesimally small interval for the latter, is
known as derivative of the function.

13. Differentiation : The process of calculating the derivative of a function is called
differentiation.

14. Inver se function : A function whose dependent and independent variables of the
original function are interchanged, is called an inverse function.

15. Slope of alinear function : The slope of a linear function is the tan of the angle
between the line and the horizontal axis on its positive direction.

16. Slope of a non-linear function : The slope of a non-linear function at any point on
it is the tan of the angle between the tangent at that point and the horizontal axis on its
positive direction.

17. Multivariave function : A function having more than one independent variable is
called a multivariate function.

18. Bivariate function : A special multivariate function whose number of independent
variables is just two, is known as bivariate function.
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19. Partial derivative : Partial derivative in a multivariate function involving two or
more independent variables is the derivative with respect to one of the variables,
treating all other independent variables as constants.

20. Total derivative : Total derivative of a multivariate function with respect to one
independent variable is the sum of both direct effect and indirect effect(s) through other
variable(s).

21. Total differential : Total differential of a multivariate function is the total change in
the dependent variable due to change in all the independent variables when independent
variables have no interdependence among themselves.

22. Higher order partial derivatives : Higher order partial derivatives are the
derivatives obtained by repitition of partial differentiation.

23. Homogeneous function : A function y = f(x,, X,, ..., X) is said to be homogeneous
of degree k if f(AX,, AX,, ..., AX)) = AKy.

24. Euler’s theorem : The Euler’s theorem states that if a multivariate function y =

f(x,, X,, ..., X,) is homogeneous of degree k, then =k.y.

25. Homothetic function : Ahomothetic function is a monotomically increasing function
of any homogeneous function.

1.15 Exercises

A. Short Answer Type Questions

=

Define function.

What is constant function?

Give the definition of polynomial function.

What is inverse function?

What do you mean by rational function?

What is a rectangular hyperbola?

Define non-algebraic function.

What are the different types of non-algebraic function?

. What is derivative of a function?

10. What is differentiation?

11. State the first principle of differentiation.
12. State the power rule of differentiation.

© ONoO TR WN
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13. State the product rule of differentiation.

d
14. Let y = e’ Determine d_i

15. Draw a constant function on (x,y) plane.

16. What is partial derivative of a function?

17.What do you mean by total derivative of a function?

18. What is total differential of a function?

19. Define a multivariate function.

20.What is a bivariate function?

21.What do you mean by higher order partial derivatives?
22.What is Young’s theorem?

23.What is homogeneous function?

24. Determine the degree of homogeneity in the following cases :

=N

() 2= (i) y=atoch (iii) Z=§ (iv) Z=§2:§2

26. State the Euler’s theorem.

><|><

Medium Answer Type Questions (Each of 5 marks)

1. Write a short note on the concept of function.
2. Explain the concept of inverse function with a suitable example.
3. Briefly describe the concept of rational function.

d -
4. Determine Y of the following function from first principle of differentiation :

dx
y=7x2-8x+20
Explain the chain rule or function of a function rule of differentiation.
State the quotient rule of differentiation. Give on example to clarify the rule.
Write a short note on higher order derivatives or higher order differentiation.
How can you determine slope of a linear function?
How will you determine slope of a non-linear function?
10. Briefly describe the concept of partial derivative.
11. Explain the concept of total derivative of a bivariate function.
12. Discuss the concept of total differential of a multivariate function.

© o N o U
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13. Mention the major rules of total differential of a function.

14. What do you mean by direct second order partial derivatives and cross second order
partial derivatives.

15. State Young’s theorem. Show with the help of an example that cross partial dervatives
are equal.

16. Define homogeneous function and show how the degree of homogeneity can be
determined.

17. Determine the degree of homogeneity of the following two functions :
1

(a) y = 30x%x" (b)z= Alax " +(L-a)y "] *
Ans. (a) o+ B, (b) 1
Long Answer Type Questions

Briefly describe some major types of functions.

Discuss different types of polynomial functions.

Analyse the concept of derivative or differentiation citing some examples.

State the major rules of differentiation or derivative.

Briefly describe the concept of slope of a function using suitable diagrams wherever

necessary.

Discuss the concept of curvature of a function.

Write a short note on multivariate functions and their derivatives.

8. Make aclear distinction among partial derivative, total derivative and total differential
of a multivariate function.

9. Write a short note on higher order partial derivatives.

10. State the Euler’s theorem. Prove the Euler’s theorem taking a bivariate function.
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2.1 Objectives

After the study of this unit, the reader will be able to know
e application of various functions in Economics
e average and marginal functions
e conditions of profit maximisation/cost minimisation
¢ slope and curvature of various curves used in Economics
¢ relation among different concepts of revenue and price elasticity of demand
e properties of homogeneous production function
e properties of Cobb-Douglas production function
e the product exhaustion theorem
e properties of CES production function

2.2 Introduction

Inthe previous unit, we have learnt about various types of functions and their derivatives.
In the present unit, we shall learn about the economic applications of those concepts. In
Economics, we come across numerous types of relationships among variables i.e.,
functions. For example, we have the demand function, D = f(p), where D = quantity
demanded and p = price; we may have the supply function, S = S(P), the consumption
function, C = (YY) where Y stands for income, the saving function, S = S(Y) where
S = amount of saving, the investment function, I = I(r) where r stands for the rate of
interest and so on. These are examples of univariate functions where the number of
independent variable is just one. Similarly, we may have functions of more general type
like, D=1(P, Y, P, t...) where D = demand, P = own price of the good, Y = income of the
consumer, P_= Prices of related goods, t = tastes of the consumer, etc. This is actually a
multivariate function. When we write, C = C(Y, 1, a, d, ...) where Y = level of income, a
= asset holding, r = rate of interest, d = distribution of income, it is also an example of
multivariate function. When we say that saving(S) and investment (1) depend on the
level of income (YY) and the rate of interest(r), then S = (Y, r) and I = g(Y, r). They are
actually examples of bivariate functions when the number of independent variables is
two. Bivariate functions, we know, are special cases of multivariate functions. In
Economics, we have many other functions stating some relationships among different
variables .

Now, in Economics, most of the economic decisions are determined by the application
of the concept of ‘marginal’. While taking a decision, the decision-maker (household,
firm, government or anybody else) has to consider the marginal (or extra) benefit from
and marginal cost of implementing that decision. If the marginal benefit exceeds marginal
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cost, that decision is undertaken. Now, the magnitudes of marginal benefit and marginal
cost of that decision can be known by applying the concept of derivative or the technique
of differentiation. Hence, derivative or differentiation plays a very important role in
Mathematical Economics. In this unit, we shall try to learn about the applications of
functions and their derivatives in Economics.

2.3 Average and Marginal Functions

Suppose we have a function : y = f(x). Then y/x or f(x)/x is the average function of the

d
original function y = f(x). On the other hand, d_i or f'(x), i.e., the first derivative of the

function is called its marginal function. Consider the example from Economics. Let

R
total revenue (R) is a function of the amount of output sold (q), i.e., R =R(q). So, — or,

q
R(@) . . . dR
T is called the average revenue function. The marginal function is given by E or

dR
R’(q). This E is the mathematical notation of MR which is the change in total revenue

due to one unit change in output. We take another example. Let the consumption function
or the propensity to consume be given by : C = C(Y). Here C = total consumption
expenditure and Y = total income. So, average function of the consumption function is
C )

v or VA In Economics, it is called the average propensity to consume(APC). Again,

. : : . .. dcC N
marginal function of this consumption function is v or C'(Y). In Economics, it is

called the marginal propensity to consume (MPC). Consider another example. Let total
cost (C) of a firm depend on the level of output produced (q). So, C = C(q). Then its

_Céq) while :_;: or C'(q) is the marginal function. In

Economics, the former is called average cost (AC) or average total cost (ATC) while
the latter is called marginal cost (MC).

... C
average function is — or

2.4 Different Elagticitiesin Terms of Average and Marginal Functions

Let the univariate function be : y = f(x). It simply says that y will change as x does.
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Suppose we want to know the percentage change in y due to one percent change in X.
That is known from the concept of elasticity. Thus, elasticity of y with respect to

x(or x-elasticity of y) denoted by e, is given by :

dy
o _ Percentage change in'y 7X100 dy x _xdy
" percentage change in X ~ dx Ty dx ydx
—x100
X

dy/dx  marginal function
y/x  average function
Thus, by using the concepts of average function and marginal function we can get
the value of elasticity. Take examples from Economics. If the demand function is :
D = f(p), then price elasticity of demand,

This may be re-written as, e, =

dD 100 dD
e D XY _dD P _ P dD_gp _ marginal function
= T —X— = —.—= = -
O::l):> «00 D dP DdpP E average function

Similarly, we have the supply function S = S(P). The elasticity of supply
dS ds

e marginal ffunctt_ion _ d?P:Ed_ _ §X100
average function
: o S d:x100

percentage change in supply

percentage change in price
If the cost function is ¢ = f(q) where ¢ = total cost and q = total output, then elasticity

of total cost with respect to output,

dc dc

c i i MC
e, :L:g.%:d_q: marginal funct_lon Thus, e, = M€

dg c'dg ¢ average function AC

q q

For the consumption function C = C(Y) where C = total consumption, Y = total
income, elasticity of consumption expenditure with respect to income is,
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) _ dC
_ percentage change in consumption  ~~ 100
c . =
percentage change in income aY 100
Y
dC
_d_C Y _Y dC _ dY _ marginal function o _ MPC
C dY c'dY C  average function ' ¢ APC
Y

Thus we can express various elasticities in terms of marginal function and average
function.

2.5 Major Applications of Derivatives in Economics

d
We know that if y = f(x), then its first derivative is given by : d—i: or f'(x). This derivative
has so many applications in Economics. We consider some of them below.

2.5.1 To Determine Different Types of Elasticities

We first consider different types of elasticity of demand. Let us take a multivariate demand
function : g, = f(p,, M, p ) i.e., demand for any comodity, x, depends on its own price
(p,), income of the consumer (M) and price of the related good (py) So, here we have 3
types of elasticity of demand, namely, (own) price elasticity of demand, income elasticity
of demand and cross (price) elasticity of demand.

We first consider (own) price elasticity of demand. In that case we take M and P, as
given. So, q, = f(P,) or, simply, g = f(p). We know that price elasticity of demand,

dg
o = marginal function _ dp _p dq
d° average function 9 g dp

p
From this formula, we can easily determine the value of e, if the demand function is
given. We give some examples. We should note that to determine e,, we have to know

d
the first derivative of the demand function, i.e., dg
60
Example 2.1. The demand function is q = m Calculate price elasticity of demand

atp =5.
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60
60 _60_,

Solution: Ifp=5,q= 2045 = 2x515° 15

o dg_ 60 .,
A0 ™ (2p <5y
. dg 60 60 8
= = - — X2 =——
PUINg P =5, = s ° T T1ex15 - 15
g dp 4 15 3

2 2
Thus, atp =5, e,= 3 or absolute value of e, = [e | = 3

Example 2.2 The demand function is : D = 74 — 2p — p?. Calculate e, when p = 4.
Solution: Whenp=4,D=74-2p-p?2=74-2x4-42=50
Again, d_D =-2-2p. When p =4, d—D:—2_2x4:_10
dp dp

Putting these values, we get,

pddD 4 4 4
gy=——=—x-10=—= = 2o
"D dp 50 5 = legl 5 0.8
_ . . L 100
Example 2.3 : Calculate price elasticity of demand for the function : x = —
p
. L 100 _ 5
Solution : Our demand function is : x =——=100p
p
dx
% =-5x 100p—-1=-5 x 100p~°

p dx p 6 p
Now, e, =+—.— = _5).100.p %= (-5).0— =_
oW, € =" i 100p_5><( ) p°=(-5) o 5

So,e,=-5or, e, =5.
In this case, the value of e, = — 5 for any value of price or quantity demanded. Such
demand curves are called iso-elastic demand curves. We consider a general example.

a
Example2.4: Letq = p_“ or, q = ap~. Calculate e, of this demand function.



228 NSOU e PGEC-1V

Solution : We have, = 2 ap~.
po

dqg )
Now, _dp =—q.ap
p dg p o1 - (Fa)p™® _
We know, e, =~ —=——(-a)ap*1=22 —_qgorle|=a.
W 8= o ™ g (0P —=—aonfel=a

Thus, in general, if g = ap™, e, =—a, o, [e,| = a

That is, the value of e, is the same at all points on the demand curve. We have said
that such demand curves are called iso-elastic demand curves. Generally, the exponential
demand curves are of this nature.

Alternativemethod : We can calculate e in the case demand functions of exponential

d—qxloo da dlo
nature in an alternative manner. We know that e, -4 _4_¢g009q This is
P 90 90 dlogp

the definition of e, in terms of logarithms. From this fgrmula we can easily determine
&4 in the case of demand functions of exponential nature. Consider the following example.

Example 2.5 Calculate e, if the demand law is : g =ap™ (a > 0, a2 > 0)

Solution : We have, q = ap™
Taking log of both sides, we get, log g = log a — alog p

dg
q dlogq . : ..

Now, we know, e, = @ =3 logp This is the formula of price elasticity of demand
P

in terms of logarithms.
Seg=0—axl=-oorlef=a

. a .
Thus, if g = p_“ or,q=ap*e,=-o or |e, = o at all points on the demand

curve. One special case of this type of demand functionis: q = L ap~L. In this case,
p

a = 1. So, in this case the value of price elasticity of demand = e, = -1. or [e,| = 1.
Let us check it.
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a
Example26:1fq= E , calculate its price elasticity of demand.

. a dq
Solution: q=— =ap™ . ap2
p p
-1
Now, e, ZE.d—qzl_lx—ap"Z: P -
q dp ap !
or, ey = 1. Here the value of price elastically of demand is unity at all points. Such
a
demand curves are called unit-elastic demand curve. In this case, q = B

or, pq = a = constant. This is an equation of a rectangular hyperbola.

So, the demand curve will be a rectangular hyperbola in this case. Such curves are
also called constant outlay curve or constant expenditure curve because in this case, the
expenditure or outlay of the buyer (= pq) is constant (= a). We have considered it in unit 1.

We can calculate e, in this case by using log-definition also.

Alternative method : Calculate e, if q = 2 Wwherea = constant(a > 0).
p

Solution : We have, q = a ap~!

Taking log of both sides, we have, log g = log a—log p
dlogq

Now, e, = dlogp

=0-1=-1 oore=1

a .
We have seen that if g = p_“ or, g = ap~%, then the value of power of p is the value of

price elasticity of demand. Hence, if p = ax™, the value of price elasticity of demand
1
will be (_Hj' Consider the next example.

Example 2.7 : Calculate price elasticity of demand if p = 20x2
Solution : Here, p = 20x2

3

2x20 Cdx X
NG “dp 2x20

d
o= (2) 20x7 = (2)2062 =
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Now, e ZE.d—X: &X_zx X = 1.X: 1

P o x dp X 2x20 2 x 2
Alternative method : We have, p = 20x2. Taking log of both sides, we have,
log p = log 20 - 2log x

dlogp
s dlogX—O—le-—z
dlogx dlogx 1 1
e, =—— . e, = = —— =_ =
Now, ©q dlogp ~ * dlogp 2or,|ed| > 0.5

We may consider the general case. Take the following example.
Example 2.8 : Calculate price elasticity of demand if p =ax™" (a >0, n > 0).

Solution : We have, p = ax™"
Taking log of both sides, log p = log a — n log x

dlogp
Now, dlogX—O—nX1——n
_dlogx 1 1

Let us consider the calculation of income elasticity of demand. If own price and
prices of all related goods remain unchanged, then we can say that quantity demanded
(q) of agood will depend on the money income (M) of the consumer, i.e., g = f(M). This
is called income-demand function or Engel function. Its graphical form gives us the
income-demand curve or the Engel curve. Now, income elasticity of demand may precisely
be defined as the percentage change in quantity demanded due to one per cent change in
income of the buyer, ceteris paribus Thus, income elasticity,

_ percentage change in demand
percentage change in income

M

dq
| g _a M M
Using symbols, €,, —dM—W T g dM q dM™m
M

For normal goods, 3—& >0 and so, e, > 0.
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For inferior goods, (;j—'?/l <0 and so, g, <0.

d
We should note that to determine e,,, we should know the first derivative ( dI?/I] of

the income demand function or Engel function : q = f(M).

Thus we can say that to determine any sort of elasticity we have to determine the
first derivative of the relevant function with respect to the related variable. We consider
some examples of determination of income elasticity of demand.

Example 2.9 : Calculate income elasticity of demand if the Engel function is :
g = cM where c is a positive constant.

dg
= =C
Solution : We have, g =cM M

_dg M ch1

dMdg g q
Alternative method : We can calculate e, in this case by using logarithms. In terms
of log, the income elasticity of demand may be written as

Now, e,,

dg
q _ dlogq
M7 dM " dlogM
M
[In general, if y = f(x), then x-elasticity of y, say, e = d IOgy]
g Ty ) y oty, say, Y= dlogx
Now, we have, g = cM. So, taking log of both sides, we have, log g = log ¢ + log M
Now, e,, _ dlogg =0+1=1
“dlogM

Thus, if the income-demand function or the Engel function is of the form g = cM
(i.e. of the standard form : y = mx) or Engel curve is a straight line passing through the
origin, the value of income elasticity of demand will be equal to unity in all cases. Thus,
ifq=3Mor,q=0.5Mor q= M, the value of income elasticity of demand will be equal
to unity in all such cases.

Let us consider the calculation of income elasticity of demand when the demand
function is of exponential type. Consider the following example.
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Example 2.10 : Calculate price elasticityof demand and income elasticity of demand of
the demand functionis : g = Ap* MB. (A, a, B are constants)

Solution : We have, q = Ap* MP
Taking log of both sides, we have, log g =log A+ o log p + 3 log M

Now, price elasticity of demand, e, = ologg =0+a.l+0=a
dlogp
Income elasticity of demand, € logq _ 0+0+B.1=

If the absolute value of e, is greater than one, then demand is said to be price-elastic.
In the opposite case, demaned is said to be price-inelastic i.e., inelastic with respect to
price.

Similarly,if the value of income-elasticity of demand (B) is positive and greater than
one, the demand is said to be income elastic. If § > 0 but B < 1, demand is said to be
income-inelastic. i.e., inelastic with respect to income. If B <0, i.e., income elasticity is
negative, the good is an inferior good. If B > 1, the good is called a luxury good. If
0 <B <1, the good is a necessity.

Let us consider the calculation of cross elasticity of demand. Suppose the demand
function'is : x = f(p,, M, py) where p, is the price of good x i.e., own price, M = income
of the consumer and Py is the price of the good y which is somehow related to good x.
Now, cross (price) elasticity of demand for good X is given by :

_ percentage change in demand for good x
percentage change in price of goody

Cross price elasticity, e,

OX
. 00 o b, b, ox
Using symbols, e, =—-2—— = —x——= —.—.
X X
i y d 0
—Y %100 y y
Py

We see that to determine cross price elasticity of demand for good X, we have to
determine the first derivative of the demand function x = f(p,, M, py) with respect to Py

I.e., we have to know ;TX If x and y are substitutes, the ;TX >0and so, e, > 0. If x
y y

<0. Ifxand yare unrelated goods,

and y are complementary goods, 66_)( <0 and so, €y

y
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x =0 and hence e, = 0. If we use the log-definition, then e, = 0logx ,
P ’ Y ologp,

y

Let us give some examples.
Example2.11: Calculate cross (price) elasticity of demand for good x when the demand
function is : x = Ap‘;MBp§ where the symbols have their usual meanings (A > 0).

Solution : We have, x = Ap;M’p} .

Taking log of both sides, log x = log A+ o log p, + 3 log M + v log Py
Now, cross price elasticity of demand for good X,

_ Ologx
¥ 0ologp,

=0+0+y.1l=y.

Ify >0, x and y are substitutes. Ify <0, x and y are complements.
Similarly, own price elasticity of demand for good X,

_OlOX G g1+0+0=a
* 0Ologp,
Income elasticity of demand for x, e,, =M =0+B.1+0+0=P
* Olog M

Alternative Method : We have, x = Ap;.M°p}

MP.
X AP pr rARMR L X
- op, Py Py
IOy OX OX
Now, cross price elasticity of demand, e, . Putting the value of T
X py y
p X
Xy = _yy —=Y
X p,
Similarly, (own) price elasticity of demand = o and income elasticity of demand = 3

Example 2.12 : Demand functions of two goods are : g, = p,;**p3® and g, = p>°p5°.

Calculate cross elasticity of demand for two goods and show the relation between them.

Solution : Demand function of the first good is : g, = p;*°p5°

. log g, =-1.51log p, + 0.3 log p,



234 NSOU e PGEC-1V

- Cross elasticity of demand for g, e,, = 2:28 21 =0+031=03>0
2

Demand function of the second good is : q, = p>°p;*°
- log g,=0.51log p, - 0.6 log p,

dlogq,
17 Jdlogp,

As the cross price elasticities of the two goods are positive, the two goods are substitutes
of each other.
Let us consider some more examples on price and income elasticities of demand.

Example2.13: Aconsumer’s demand curve is : p =100 —\/a . Calculate price elasticity
of demand if g = 1600.

Solution : When g = 1600, p =100 -+/1600 = 100 — 40 = 60

. Cross elasticity of demand for g,, e, =05-0=05>0

1

Further, we have, p = 100 - ,/q =100 -q?

dp 1 ;1 1 ! 1 dq
=50 =g = -——= . —2=-2,/q=-2v1600=-2 x40
dg 2 2 2\q dp |
Now, e, =B.d—q=ﬂ(—2 x 40) =3, or |e,| =3
q dp 1600

Example 2.14 : If the demand law is p = (4 — 5x)?, for what value of X is the elasticity
of demand unity?
Solution : We have, p = (4 - 5x)?

g—z =2(4 - 5x)(-5) =-10(4 - 5x) j—z = —Wl_&()
Now, price elasticity of demand, e, = E.d—x = (4-5%)° X -1 = - 45X .
x dp X 10(4 -5x) 10x
Now, we are given that |e | = 1
JAX or, 10x = 4 — 5x - 15x=4 .zx:-i(Ans)
10x ' 15

2

Example2.15: Demand function: q = +M. Show that 1 <e,, < 2. Also consider

the range of e,
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2

M

Solution : We have, g =

o9 12M , 12M+P
s
oM~ P P

. - M o M(12M+P
Now, income elasticity of demand, e, SRLLLCL I —( al ]
qg oM q P

:12M2+MP 9 P

P 6M? + MP
M? M? + MP
P
_12MP+MP  M(@2M+P) 12M+P  6M+P  6M 6M

= = = + =1+
6M’+MP  M(6M+P) 6M+P ~ 6M+P 6M+P 6M +P

<1
ASO<Em+p =™
. &, Will be greater than 1 but less than 2, i.e., 1 <e,, < 2 (proved).
. P q
Similarly, |ep| = a_p I
q 6M° P 6M?
Now, _P p? . |ep| q p2
_ 6M? 6M? . 6M* &M
~ Pq 6M> MP  6M*+MP 6M+P
p -
P
As 0 6M 1,0<|ep|<1.

2.5.2To Determine Marginal Values

We have mentioned how the concept of marginal is very much important in various
economic decision making. Now, this marginal concept can be known just from the

d
concept of derivative. If y = f(x), then d—i or f(x) is the change in y due to a very small
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d
change in x. Now, if x changes by one unit, then d_i or f'(x) gives us the change in'y

d :
due to one unit change in x. Then d—i gives us the marginal value of x.

Consider some examples from Economics. We may assume that total revenue (R) of

drR
a seller depends on the volume of sales (q) i.e., R = f(g). Then E or f'(q) is the

marginal revenue of selling one additional unit of output. For example, let the inverse
demand function be : p = a— bg. This is actually the AR (average revenue) curve. This

Thus, average revenue is identical with price. Thus, p= AR =a - bq is the AR curve.
Then total revenue, R=p x q=AR x q = (a-bqg)q =aq—bg?. Then MR = 3—2 =a-2bq.

Thus, if AR curve is linear, MR curve will also be linear. Further, if g =0, then AR = a
and also MR = a. Thus, both AR and MR curves will have same vertical intercept (= a).
So they will start from the same point on the vertical axis. Further, slope of AR =

dAR ) dMR
W: — b while slope of MR curve = W =-2b = 2(-b). Thus, slope of MR curve

will be twice of that of AR curve. Further, MR = a — 2bg = (a — bg) — bq = AR - bag.

So, MR-AR=-hbqg<0 .. MR <AR.

Thus, if AR is falling i.e., if AR curve is downward sloping, then MR curve will lie
below the AR curve.

Similarly, from the derivative of total cost function, we can get marginal cost (MC).
We may assume that total cost (C) of a firm depends on the size of output(q) i.e., C =

dC
f(g). Then marginal cost or MC = a or f'(q). For example, let the total cost function

be givenby: C=a,+a,q+a,q% +a,q3. Ifq=0, C = a,. So, a, represents total fixed cost
and TVC = a,q + a,0% + a,0°.

dC dTVC
Now, MC = a = aq - a, +2a,q + 3a,0°.
In general, we write, C=TFC + TVC
dC dTVvC
Now, =—=0+ (as TFC s constant and derivative of a constant is zero).

dg dg
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dC dTVC

dg  dg
variable cost due to one unit change in output (as TFC component of total cost is fixed).
Similarly, by taking derivative of total utility function, we get marginal utility (MU) of
a commodity. If the total utility function is : U = f(q), then marginal utility is given by

Thus, MC = i.e., MC is the change in total cost or change in total

m q or f'(q). Similarly, by differentiating total product function with respect to a particular

input, we get marginal product of that input. For example, let the total product (q)

d
function be : q = f(L). Then marginal product of labour is given by d—ﬁ or f'(L). If we

take a total product function of more general form : g = f(L, K), then its partial derivatives

(or f) and (or f.) will give us marginal products of labour (L) and capital (K)

respectlvely.
2.5.3To Deter mine Profit-Maximising and Cost-M inimising Output

The concept of derivative is also useful to determine profit maximising output and cost
minimising output. Consider first the case of profit. We know that total profit (r) is the
difference between total revenue(R) and total cost(C). Again, both total revenue and
total cost may be assumed to be functions of the level of output. Thus, total profit, = =
R - C =R(q) - C(q). So, = = f(q) i.e., total profit is a function of output. Now, to
determine the level of output at which profit is maximum, we have to fulfil two
dr d(dn) o'

conditions : (i) 7~ dq orf'(q) =0and -~ dq dq or dq’ or f’(q) < 0. Thus, to determine
profit-maximising output, we have to consider the first derivative of the profit function
and then the derivative of the first derivative i.e., the second derivative of the profit
function.

Consider now the case of cost. Let the total cost function be : C = f(q) where q is the

C_f
q q

level of output. Then average cost, AC = . Thus, AC is also a function of
output (q) i.e., AC = h(q).

dAC
Now, to minimise AC, two conditions are to be fulfilled : (i) W orh'(g) =0 and
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d ( dAC d’AC . L
or or, h"(q) > 0. Thus, to determine AC-minimising output, we

have to apply the concept of derivative.
The issues of maximisation and minimisation have been considered in details in the
next unit.

2.5.4To Determine Slope and Curvature of Indifference Curve, I soquant,
etc.

To determine the slope and curvature of indifference curve, isoquant, etc. we need the
help of derivation. First we consider the case of an indifference curve. Let the utility
function be : U = f(q,, q,) where g, and g, are the quantities of two goods, Q, and Q,,
respectively. Now, taking total derivative of the utility function,

of of

dU=—.dq, +—.dq
Weoeh T ag, T ag,
of of
Using alternative notation, az f,(=MU,) and az f,(= MU,), we get,
1 2

du = f,dq, + f,da,.

Now, along a given indifference curve, utility level is constant, say, U,. So, the
equation of a particular indifference curve is : U, = f(q,, g,). As U is fixed at U, along
an indifference curve, dU = 0, So, we have,

f,dg, + f,dg, =0 or, f,dqg, = -f,dq,

99, __f MUY,
" dg,

f, MU,

: d f
Under the assumption that MU, (= f,) >0 and MU,(=f,) >0, YN _ Lo :

dg, f,

dq
Now, qz is the slope of an indifference curve. Hence, an indifference curve will be
1

negatively sloped. The expression, _da, is called the marginal rate of substitution

da,

f MU
(MRS). Thus, MRS = —3%2 = 1 "%
dg, f, MU,
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To know the curvature of the indifference curve, we have to take further derivative

of a9, ie d (qu] d2q2 and to consider its sign
dg, " do, 2 gn.

or
dq, dq,
dg, f o o
We have, dg =73 We shall keep in mind that in indifference curve analysis,
1 2

utility functions are interdependent. So, MU, (or f;) and MU, (or f,) both will depend
ong,andq,ie.,f =f(q,q,) andf,=1(q,, q,).
do, _ £ __£(9,,9,)

Thus, —2=-2=
“odg, f, £0.9,)

dg
Now we differentiate q qz with respect to q,.
1

d (dg,) d’q 1 dg dq
Th Z = 2-_— |ff+f —2f —ff—-f —=f
en, dql[d%] de f22 {11 2ty dq1 2 " hali T dq1 1

1 f f
_g {fnfz + f12 (_é] -fz _f21f1 _fzz [_éj'fli|

1 f?
_f_z{fnfz - f12f1 - f21f1 + f22 . fi}
2

2

_ 1

- —f—3[f11f22 —fofif, - fif, + 1=22f12]

2

Now, from Young’s theorem we know that cross partial derivatives are equal i.e., f,
=f,,. So, we get,

d’q 1

dqu = _E[fnfzz —2f,1f, +f22f12]
: o L d*q

Now, if we assume that MRS is diminishing, then it implies that q = > 0. Then the
1

braketed portion of the RHS is negative. In this case, the indifference curve will be

. . d? . . .
strictly convex to the origin. If q qj < 0, then MRS is increasing and the IC will be
1
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. . R . .
strictly concave to the origin. Again, if q q22 = 0, then the indifference curve will be

1

linear.

In the same manner we may consider the slope and curvature of an iso-quant. Let the
production function be =Y =f(x,, x,) whose X, and x, are the quantities of two inputs,
X, and X, respectively. In that case, if Y is fixed at Y, the equation of a given isoquant

dx f
is 1Y, =f(X;, X,). Now proceeding in the earlier manner, we can deduce that d_x2 = —f—l
1 2

where f, and f, are the marginal productivities of two inputs, X, and X, respectively,

e, f = a—f: MP, and f, = o = MP,,. The expression _dx, is called the marginal
OX, OX, dx,

rate of technical substitution (MRTS) between the two inputs. Thus, MRTS = _9%

dx,

::—1 = MP, . We see that dﬁ: —f—l = _MP,

2 MPZ Xl f2 2
positive. Thus, the slope of the isoquant is negative or the iso-quant is negatively sloped.

< 0 as MP(or f)) and MP,(or f,) are

To know the curvature of the isoquant, we have to differentiate ax, further with

dx,
_ d (dx, d’x, o
respect to x, i.e., we have to know the value of dx, | dx, or dx? Proceeding in the
, . d’x, 1 )
same manner as in the case of indifference curve, we get, —~= —— (f ,f,>= 2f , +
dx; f)

f,,f,2) assuming f, = f,(x;, x,) and f, = f,(x, X,) and putting f,, = f,,.
2

. e d°x .
Now, if we assume that MRTS is diminishing, then 5 2 > 0. Inthat case, the iso-quant
X

1
. . d’x, _ - d*x, .
will be strictly convex. If ™ =0, the isoquant will be linear. If Ve <0, the isoquant
X

. k! 1 .
will be concave to the origin. Thus, to know the slope and curvature of an indifference
curve or of an isoquant or of any curve, we have to use the concept of derivative.
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2.6 Relation between Price Elasticity of Demand and Total
Expenditure or Total Revenue

What is total expenditure (TE) to the buyer is total revenue (TR) to the seller. They are,
by difinition, equal to each other. TE or TR = p X q where p = price per unit of a
commaodity and q is the amount of the commodity bought or sold. We know that quantity
demanded (q) is a function of price (p). So, total expenditure, TE = p.f(p) = E(p). Thus,
if p changes, TE may change. If p falls, then from the law of demand we know that g

d
will rise (d_g < 0]. So, TE (= p x g) may rise, remain constant or fall. That depends on

the relative rates of change in demand and change in price. In other words, whether TE
will rise or not due to change in p, depends on the value of price elasticity of demand.

We know that e, :E.d—q As d_q< 0, e, =B.3—2< 0. So, the absolute value of e,

q dp dp q

Let us see what happens to TE or simply, E due to change in p. That can be known by

dE d
differentiating E(= p x g) with respect to p. So, we get, E =0+ p-ﬁ,

dE
Now if TE remains the same due to change in p, then 5: 0

So,q+ p.d— =0,o0r p.d— =-q or, —B.d—qzl or, leg =1
dp dp q dp

Its converse is also true, i.e., if e, = 1, then total expenditure of the buyer will
remain the same due to change in price.

In the same manner, it can be proved that if total expenditure rises as price falls, or if
total expenditure falls as price rises, then |e,| > 1 i.e., demand is elastic. Its converse is
also true i.e., if demand is elastic, then total expenditure will rise with fall in price and
will fall with the rise in price.

Similary, consider the opposite case. If total expenditure falls with the fall in price or
rises with the rise in price, then e | < 1 i.e., demand is inelastic. Its converse is also true
i.e., if demand is inelastic, then total expenditure will fall with the fall in price and will
rise with the rise in price.
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2.6.1 Case of Constant Expenditure or Outlay Curve

We know that total expenditure, E = p x q where q = f(p). If expenditure remains the

dE
same due to change in p, then E =0

dq _ dg _ _

So, g +p. i 0 orp. dp qor,leg=1

Thus, if expenditure of the buyer remains the same, then e | = 1 i.e., demand is unit
elastic. We like to know the shape of this unit elastic demand curve or constant
expenditure (or outlay) curve. Consider the diagram 2.1 in which we have drawn a
demand curve dd,. We take any point A on this demand curve. At this point, p = op, and
g = 0d,. So, TE of the consumer = pg = op, x 0q, = LJ op,Ad,.

Thus, total expenditure at any point on the demand curve is given by the area of the
rectangle obtained by drawing two perpendiculars on
the two axes. Similarly, total expenditure of the buyer P4 d

at B=p x gq=op, xoq, = op,Bg,. Now, we know A

that if [e,| = 1, then TE remains the same i.e, TEis & Po

constant. That is, in our figure, Area of O op,Aq, = & b, B

Area of [1 op,Bq,. And this will hold for any point on d
the demand curve, dd,. Thus, our demand curve in this ,1q
case will be such that the area of all the rectangles under 0 QG O demand

this curve is the same or constant. Such a curve is called
a rectangular hyperbola. Thus, if |e,| = 1, the demand (Fig. 2.1)

curve will be a rectangular hyperbola. In our figure,

dd, is a rectangular hyperbola. On this curve, |e,| = 1 and expenditure is constant. Hence
it is called unit elastic demand curve or constant expenditure (outlay) curve. This curve
will asymptote to the axes but will never meet the axes. Such a curve is also called an
asymptotic curve. As expenditure on this curve is constant, its equation will be : pg = k

k
or,q= 5 or, g = kp~! where k is a constant.

2.7 Relation among AR, MR and Price Elasticity of Demand

There is a standard relation among AR, MR and price elasticity of demand. To deduce
that relation, we have to use the concept of derivative. Let us consider it.

We know that total revenue, TR = p x g where p = price and g = quantity sold. We
know from inverse demand function, p = f(q). So, R=p x g =1(q) x g. So, total revenue
R is function of gq. Now, in order to deduce the relation among AR, MR and price
elasticity of demand (e,), let us define them first. AR or average revenue is the revenue
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per unit of output sold. If R is the total revenue from sales of g unit of output, then
_ total revenue R _pxq
" units of output sold E B q
identical with price (AR = p). Marginal revenue (MR) is the change in total revenue if

average revenue, = p. Average revenue is thus

drR
sales change by one unit. In terms of calculus, MR = E Thus, MR can be obtained

from first derivative of the total revenue function with respect to q. Price elasticity of
demand (e,) is the percentage change in quantity demanded due to one percent change
in price, ceteris paribus. Thus,

. . dﬁxloo
o _ percentage change in quantity demanded _q dg p p dq
d percentage change in price - @xloo - FXE - a%
P

Now, the law of demand states an inverse relation between price and quantity

dq
demanded. So, dp <0.

Hence, e, = B-d—q < 0. So, the absolute value of e is given by, |e | = —E-d—q
'dogqdp T d $ q dp’
Let us deduce the standard relation among AR, MR and e,. We have, total revenue,
R =p x q where p = f(g). Now differentiating both sides with respect to g, we get,

drR dp q dp] 1 1
aq p+q_Olq p( or, MR=DP “pdg p ™

1 1
o MR = p[l——] :AR[l——] as AR =p.
leqy | e

This is our standard relation among AR(= p), MR and price elasticity of demand (g,).
We have obtained this relation by using derivative of R with respect to g.

From this relation we can determine the value of one variable if the values of other
two are given. From the relation, we can determine MR if AR(or p) and e | are given.

. : le, | . AR-MR
Again, we can write, AR or p = " . MR. Again, [e,| = ———.
e, -1 AR
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2.7.1Relation among TR, MR and Price Elasticity of Demand
There is a standard relation among AR, MR and e, or price elasticity of demand. The

1 1
relation is : MR = AR(l—mjzp(l—m]. From this relation, we can easily
d d

mention the relation among TR, MR and price elasticity of demand. We know that MR
is the addition to total revenue. So, when MR > 0, TR will rise. Similarly, so long MR
< 0, TR will fall. If MR = 0, TR will remain constant. Now, from the above relation
among AR, MR and |e|, we see that above relation among AR, MR and [e |, we see that
MR 20 according as |e,| Z 1. From this we can say the following : When |e | > 1, MR >0
and TR will rise with the rise in g or fall in p.

Ifleyl <1, MR < 0 and TR will fall with the rise in g or fall in p.

If ley/ =1, MR =0, and so TR will remain the same due to rise or fall in p or q.

Thus, we can make the following statements :

1. If demand is elastic (|e,| > 1), a fall in price or a rise in g will lead to a rise in total
revenue, while a rise in price or fall in q will lead to fall in TR.

2. If demand is inelastic (|e,| < 1), a fall in price or a rise in demand leads to a fall in
TR, while a rise in price or a fall in g will lead to a rise in TR.

3. If demand is unitary elastic (|e,| = 1), TR will remain unchanged for a change in
price or quantity.

2.8 Elasticity of Factor Substitution and Shape of | soquant

We know that elasticity is a measure of the percentage change in one variable in respect
of a percentage change in another variable. Ify = f(x), then elasticity of y with respect to

h ] cj—yxlOO q
X is given by, ex _ percentage change !ﬂ Yy _ Yy :i_y
percentage changeinx  dx_, oy dx
X

. dy o :
We see that to measure elasticity, we have to know d—i I.e., the derivative of y with

respect to x. Hence to measure elasticity of factor substitution also, we have to apply
the concept of derivative.

Let us try to clarify first the concept of elasticity of factor substitution. Let the
production function be : q = F(K.L) where g = quantity of output and K and L are the
amounts of capital and labour, respectively. Along a particular iso-quant, output(q) is
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fixed, say, at q,. So, the equation of a particular isoquant is g, = F(K, L). Onthis isoquant,
the firm will be in equilibrium where its cost to produce that output is minimum. This

MP, P

P
is attained at the point where =—jie,MRTS= .
P MP, P, P

Now, this factor combination will change if the relative factor price of the inputs
changes. The elasticity of factor substitution measures the responsiveness of the optimal
factor-combination to a change in the relative prices of the two inputs. In other words,
we may say that K/L = f(p, /p,). The input ratio (K/L) will change if the relative factor
price of the two inputs (p, /p,) changes. Hence, the elasticity of factor substitution may
be expressed as,

_ percentage change in K/L
percentage change inp, /py

where K/L is the optimal capital-labour ratio and p, and p, are the prices of labour
and capital, respectively.

. . L MP,
Now, in equilibrium factor combination, MPL P MRTS.

k Pk
So, the elasticity of substitution can be expressed as,

percentage change in K/L
percentage change in MRTS

Thus, elasticity of factor substitution measures the percentage change in factor
proportion due to one percent change in the marginal rate of technical substitution
(MRTS). Now, putting MRTS = MP, /MP,, we have,

d(K/L)
o K/L _ _ dlog(K/L) _ (MP_/MP,)  d(K/L)
~ d(MP_/MP,)  dlog(MP_/MP,) K/L d(MP_/MP,)
MP, / MP,
Thus, to know elasticity of factor substitution, we have to apply the concept of derivative.
Alternatively, GZM
dlog(MRTS)

In general, o is finite implying” convexity of isoquants. Higher value of ¢ implies
higher degree of substitution between the two inputs i.e., less will be the convexity of
isoquants, and vice versa.

In one extreme, if o = o, there is infine possibility of substitution and isoquants will
be linear. For a linear isoquant, its slope is constant and hence (MP /MP, ) is constant
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I.e., d(MP /MP,) = 0 and hence (MP /MP,) is constant i.e., d(MP /MP, ) =0and so o
= o, In another extreme, o = 0 i.e., there is no possibility of factor substitution. In this
case, iso-quants are L-shaped or right angled. The firm will employ two inputs in a
given ratio. Then (K/L) is constant i.e., d(K/L) = 0 and hence ¢ = 0. The same discussion
is applicable to the case of indifference curve also.

2.9 Homogeneous Production Function

Let our production function be q = F(K, L) where g = quantity of output and K and L
are amounts of capital and labour, respectively. Now, we know that a function is said to
be homogeneous of degree n if multiplication of each independent variable by a constant
A will change the value of the dependent variable by the proportion A". The value of n
is called the degree of homogeneity.

So, in our context, the production function q = F(K, L) is said to be homogeneous of
degree n if F(AK, AL) = A".q. A homogeneous production function possesses some
important properties. We consider some of those properties below.

2.9.1 Homogeneous Production Function and its Properties

Property 1: If the production function is homogeneous of degree n, then the marginal
productivities of the inputs will be homogeneous of degree (n — 1).

Proof : Let our production function be : g = F(K, L). We assume that this function is
homogeneous of degree n. So, by definition, A".q = F(AK, AL)

1 1Y K
ing A =— ~|.g=F =1
Putting L,Weget,(l_j q (L ]
oo q=L"f(K/L) ... (1) where f(K/L) = F(K/L, 1).

aq

0
Now, marginal productivity of capital and labour are given by a—ﬂ(: f.) and L

0
(= 1)), respectively. We first calculate 4 or MP, from (1)

ok
_oq_ . (K)yd(K
MP, = ==L T L gl T

— n 75 1_ n_175
or, MP, =L".f L 'E_L 1 L .. (2)

3
Similarly we can calculate MP or 8—3
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MP. = 6_q - Ln—l f(ﬁj + " f’(ﬁj i(ﬁj
L= 50 - ML L) al L
L e L L
LU T R A I T
- MP. = nLn-1 f(ﬁj _ Lt f’(ﬁj (5]
-~ MP, fl T T

or, MP, = L”-{n.f(%)—%.f’(%ﬂ e

Let us consider the degree of homogeneity of MP, and MP, . To do this, we increase
both K'and L and by A times and see how the values of MP, and MP, change. We have

K
MP, = L”-l.f’(rj. When K and L both are increased by A times, the new value of

. (2K
MP,, say, MPg = (AL)™. /| -

n-1 gr K
or, MP;:xn-l.{L f (fﬂ

or, MP% = AL MP,.

i . nf(ﬁj_ﬁfr(ﬁj
Similarly, we have, MP =L C) T

When both K and L are increased by A times, the new value of MP,, say, MP}*
becomes,

AK) AK ([ AK K) K_(K
MPL= “L)”‘{”f (H]‘Hf (k_Lﬂ - ’&”‘*”‘{”f H‘tf (rﬂ

or, MP¥ = AnL MP_

Thus we see that if we change both K and L by A times, MP, and MP, will change
by A" times. So MP,. and MP_are homogeneous of degree (n — 1) if the original
production function g = F(K, L) is homogeneous of degree n.

We may get an important corollary of this property. If the degree of homogeneity of
the production function is one (n = 1), then the marginal productivity of its inputs will
be homogeneous of degree zero (n—1 =1 -1 = 0). In other words, if the production
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function is homogeneous of degree 1 and if the inputs are increased or decreased by a
certain rate, their marginal productivities will remain unchanged. In fact, in this case,
marginal productivities of the inputs will depend on the input ratio. When both the
inputs are changed by A times, the value of input ratio remains unchanged and hence
marginal productivities remain unchanged. We have considered this in the next property.
Property 2 : If the production function is homogeneous of degree 1, then its marginal
productivities will be homogeneous of degree zero, or the marginal productivities will
depend only on input ratio.
Proof : Let our production function q = F(K, L) be homogeneous of degree 1. So by
definition of homogeneous function, we can write,

Alg = F(LK, AL). Thus, Aq = F(AK, AL).

When n =1, the production function is also called linearly homogeneous.

We now put X:%.

_:F _11 = — _- = o
So, L (L ] or, g L.f(L] where F(L’lj f(L]
Now, MP|<:8—q:L.f’(5].i(5 =L.f 5 i: ! 5
oK L) dK\L L)L L
MP, = o4 _ (5]+ L.f’(ﬁ}i 5) = f(5]+ L.f’(ﬁ](—ﬁzj
L 8L L L)dL\L L L L
o, = 1) .

K
We see that both MP, and MP, are functions of or depend on T I.e., on input ratio.

Now, if both K and L are changed by A times, the value of input ratio i.e., value of

K

rwill remain unchanged. Hence the values of MP,. and MP, will remain unchanged
or mathematically, they will change by A9 times. In other words, marginal productivities
will be homogeneous of degree zero in this case. Let us formally show it.

(K KY K. (K
Our MP, = f EL Mp = f T —r-f " |- When Kand L are changed by &
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i h lue of MP mpx = f' M _pK = MP, = A0.MP
times, the new value o K say, K= AL = L = K= . K-

Similarly, the new value of MP , say MP is given by :

_ (MK AK (2K _fﬁ_ﬁfr(ﬁ]_ _ 50

Thus, if the production function is homogeneous of degree 1 or linearly homogeneous,
then its marginal productivities will be homogeneous of degree zero or its marginal
productivities will then depend only on the input ratio.

Property 3 : If the production function q = F(K, L) is homogeneous of degree 1, then
F,L+F K=0andF, .L+F,K=0

Proof : Our production function q = F(K, L) is homogeneous of degree 1 (or linearly
homogeneous). Now, from Euler’s theorem we know that if a function Z = f(x, y), then

x.8—f+y.% =lz=zie,xf + yfy = z. (see section 1.11 of unit 1)

OX

3
So, applying this Euler’s theorem we can write, K.F,. + L.F_ = qwhere Fy¢ :a_li or

ﬁ d F 5q rﬁ' F, and F, are marginal productivities of K and L
3K an L_a_Ko oL ie., Fca _ are marg produ ,

respectively. Now, differentiating this function partially with respect to K, we get,

_ %9 _
LK™ SK
oo KOFg + LF =0 (proved)
Similarly, differentiating with respect to L,

Fl+ KF +LF F

K

)
KF +F 1+LF = a_ﬂ =F_ or, KF, +LF, =0 (proved)

2.9.2Homogeneous Production Function and Returnsto Scale

The concept of homogeneous production function may be used to show different concepts
of returns to scale. In order to show this, we first explain the concept of returns to scale.
A changed in the scale of production means that the amounts of all inputs or factors are
changed in the same proportion. Returns to scale refers to changes in output level as a
result of changes in scale. Now the law of returns to scale may be of three types :
(i) constant returns to scale, (ii) increasing returns to scale and (iii) decreasing returns
to scale.



250 NSOU e PGEC-1V

If the level of output rises in the same proportion in which inputs are increased, there
will be constant returns to scale (CRS). If output level rises at a greater rate than inputs
or at a greater rate than the change in scale, there will be increasing returns to scale
(IRS). Again, there will be decreasing returns to scale (DRS) if output level rises at a
lower rate than inputs or than the change in scale.

The concepts of three types of returns to scale can be explained with the help of
homogeneous production function. The production function q = F(K, L) is said to be
homogeneous of degree n if F(AK, AL) = A".Y. This means that when K and L are
increased by A times, total output will increase by A" times. The constant n is called the
degree of homogeneity. Now, if n =1, then AY = F(AK, AL). This means that if both the
inputs K and L are increased by A times, output level will increase by A times. This
implies that there are constant returns to scale (CRS). Thus, if the degree of homogeneity
of a production function is unity, the function will exhibit constant returns to scale
(CRS). This is also known as homogeneous production function of degree 1 or linearly
homogeneous production function. Thus, if the production function is homogeneous of
degree one (n = 1) or linearly homogeneous, there will be CRS. If n > 1, i.e., the degree
of homogeneity is greater than one, there will be IRS. Similarly, if n < 1, there will be
DRS. Thus, all three types of returns to scale can be expressed by the degree of
homogeneity of a homogeneous production function.

Let us consider some examples.

Example 2.16 : Let the production function be : g = 3K + 4L. Determine the type of
returns to scale of this production function,

Solution : Here we have, g = 3K + 4L.

Now we increase both K and L by A times. The new level of output = g*(say) =
3(AK) + 4(AL) = A(BK + 4L) = 1.g = Al.q.

Thus the given production function is homogeneous of degree 1 (linearly homogeneous).
As the degree of homogeneity is equal to one, the given function displays constant
returns to scale (CRS).

Example 2.17 : Determine the type of returns to scale of the production function,

11
— viv4
Y = X{x§.

=
=

Solution : We have, Y = x2Ax4 -

Now, if we increase x, and x, by A times. The new level of output, say, Y* =

11 1

i= ;ﬁ*%,xlzxzz — 2.y Thus, the given production function is homogeneous

1
(A%,)4(AX,)
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of degree % Here, as the degree of homogeneity is less than 1, the given function
displays decreasing returns to scale.

Example 2.18. Determine the degree of homogeneity of the production function,
z = x2 + y2 and interpret your result.

Solution : We have, z = x2 + y?

Now, we increase both x and y by A times. The new output level, say, z* = (Ax)? +
(My)? =22 (2 +y?) =22z

So, the degree of homogeneity = 2. As the degree of homogeneity is greater than
one, the given production function exhibits increasing returns to scale (IRS).

Example 2.19 : Examine the type of returns to scale if the production function is :
q=30K*L1-*(0 < a < 1).
Solution : The given production function is : g = 30K L1~ Now we increase both K
and L by A times. The new output level, say, g* = 30(AK)*(AL)1-® = potl-a 30K 1-a =
ALa.

Thus, the given production function is homogeneous of degree 1 or linearly
homogeneous. So the given production function displays constant returns to scale (CRS).

Example 2.20 : What type of returns to scale will operate if the production function is :

q = 10/K +20JL ?

Solution : The given production functionis : q = 10/K + 20-/L - YWe now increase both
Kand L by A times. The new output level,

0* (say) = 103K + 20JAL = VA(20JK +20JL) = 324.

Here the degree of homogeneity is %which is less than one. So, the given production
function is subject to decreasing returns to scale (DRS).

Example 2.21 : Determine the degree of homogeneity of the production function :
q = AK“LP and indicate the type of returns to scale exhibited by this function.

Solution : Our production function is : q = AK“LB.
In order to determine the degree of homogeneity of this function, we increase both K
and L by A times. The new value of g, say, g* = A(AK)*(AL)P = AoB AK2LP = 1o*Bq,
So the given production function is homogeneous of degree (o + ).
If (o + B) = 1, it will display constant returns to scale.
If (o + B) > 1, it will display increasing returns to scale.
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If (a + B) <1, it will display decreasing returns to scale.
2.9.3Homogeneous Production Function and Product Exhaustion Theorem

The product exhaustion theorem states that if the production function is homogeneous
of degree 1 (or subject to CRS) and if the factors are paid according to their marginal
productivities, then total product will just be exhausted. There will neither be any surplus
nor any deficit. This product exhaustion theorem is a corollary of Euler’s theorem. This
is an application of Euler’s theorem in section 1.11. in Unit 1. Let us try to remember it.
The Euler’s theorem states that if a function z = F(x, y) is homogeneous of degree n,

of v, of
then Xt 8y.y =nz
Or using simpler notation, f.x + f y = nz
We apply this theorem in the case of production where the production function is, q

= F(K, L) where q = output, K = capital and L = Labour. If this production function is

homogeneous of degree n, then by Euler’s theorem, g—E.K +S—E.L =nq.

Let us consider what happens if n = 1 i.e., degree of homogeneity is equal to one or

OF i OF) _g

the production function is subject to CRS. Then we have, K o0

OF _ OF _
Now, K- MP, and i MP,

So, we can write, MP,.K + MP .L =q

Now, if the factors of production are paid according to their marginal productivities,
then MP, =p, and MP, =p, . So, we get, p,.K +p, .L =q. Here, p,..K is the payment to
capital while p, .L is the payment to labour. Thus, the LHS of the equation is total factor
payment while the R.H.S. is the total output. Thus the equation implies that if the production
function is homogeneous of degree 1 (or subject to CRS) and if the factors are paid
according to their marginal productivities, then the total product will just be exhausted.
There will neither be any surplus of total product nor there will be any deficit. This is
known as product exhaustion theorem or adding up problem. This theorem actually
follows from the Euler’s theorem and hence it may be regarded as a corollary of the
Euler’s theorem.

Let us prove the product exhaustion theorem. We have the production function,
q = F(K, L). It is assumed that this function is homogeneous of degree one or subject to
constant returns to scale. As the production function is homogeneous of degree 1, we
can write, Aq = F(AK, AL)
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: _1 qg_ (K
Putting A = T Wwe get, © = F(f’l)

=

or, q=L. F(%,l): L.f(%) where F(%,l): f( )

Thus, we have, g =L.f (%) ..(1)

Now, differentiating equation (1) with respect to K, we get,
A _¢ _ 1 ¢(K\1_#(K
=L (L).L _ f (L)

Multiplying both sides by K, we get, K-S = K.f'(%) )
Again, differentiating equation (1) with respect to L,

e

5q K
Multiplying both sides by L, we get, L5~ = (f) Kf’ (L) ..(3)

Adding (2) and (3), we get, S + L = Lf (K) = g from (1]

Or, using different notations, f .K + fL.L =q
This is our product exhaustion theorem.

We should note one thing. Our general theorem is :K,g_liJr L'S_E: nq if the

production function is homogeneous of degree n. Now if n > 1, more output than g will
be required to make payments to the factors according to their marginal productivities.
Thus, if there are increasing returns to scale (n > 1) and if the factors are paid according
to their marginal productivities, then there will be a dificit in total output to pay those
factors. On the other hand, if n < 1, i.e., if there are decreasing returns to scale, total
output will not be fully utilised to pay the factors according to their marginal
productivities. In that case, there will be a surplus of total output.
Let us cite some examples on product exhaustion theorem.

Example 2.22 : The production function is : q = 2K? + 3L2. What will happen to total
product if factors are paid according to their marginal productivities?

Solution : We have, q = 2K? + 312

5q dq
MP, 5K 4K and MP, 5L
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Now, if factors are paid according to their marginal productivities, then total payment
to capital and labour is given by= K.§—2+ LS—E = K.4K + L.6L

= 4K? + 6L2 = 2(2K? + 3L?) = 2q.

Thus, it shows that twice of total product would be necessary to pay the factors
according to their marginal productivities. In other words, there would be a deficit in
total output.

In fact, the given production function q = 2K2 + 3L2 is homogeneous of degree 2
(i.e.,n=2) or subject to IRS. So, as per Euler’s theorem, amount of total factor payment
would be = 2q (= nq) and hence there will be a deficit in total output.

1 3
Example 2.23 : The production function is q = 30 K*L*. What will happen to total
product if capital (K) and labour (L) are paid according to their marginal productivities?
1 3

Solution : We have, q = 30 K*L*

L, s L
Now, MP, = S—Ezix'sow L* and MP_ = S—izgxs*owu 1

S0, K294 .99 _ K MP, +L.MP,
5K 8L

3 1 3 133 1 3

1 — — — —
Kx%x30K4_lL4 + |_><%><30K4L4_1 = %XB’OK“L“ +Z><30K4L4

l><q+§><q ZQ(£+§] = q =TP.
4 4 4 4 '

Thus, if factors are paid according to their marginal productivities, then total product
will just be exhausted.

In fact, the given production function is homogeneous of degree one (please check
it) or subject to constant returns to scale. Hence, as per Euler’s theorem, total product
will just be exhausted if factors are paid according to their marginal productivities.

1 1

Example 2.24 : The production function is q=K*L*. Will total product be just

exhausted if factors are paid according to their marginal productivities?
11

Solution : We have, q=K*L*.

1 1
Now, MP, ZS_EZ%K4_1'L4 and MP, :S—Ezzwu
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K94, 99

So, total payment to capital and labour = + L'S_L

1 1 1 1 1 1 1 1
- Kx%K4_1L4+Lx£K4L4 g %K“L“ +%K4L4

=2x

1
Thus, in this case, > of total output is rgquired to make payments to factors as per

their marginal productivities. So, there will be a surplus of total output.
Actually, in this case, the given production function is homogeneous of degree

1 1
> or subject to DRS (n =3 < 1] . Hence, as per Euler’s theorem, total output required

1
to make factor payment = nq = > g. Thus there is surplus of total output.

2.10 Cobb-Douglas Production Function and its Properties

The Cobb-Douglas Production function is a particular functional form of the production
function. It represents the relationship between two or more inputs—typically physical
capital and labour—and the units of output that can be produced. It is based on the
empirical study of the American manufacturing industry made by Charles W. Cobb and
Paul H. Douglas. This function has some nice properties and hence is widely used in
the analyses of economics and econometrics. The general form of the Cobb-Douglas
production function is : g = AK*LP where A, a. and B are positive parameters. Here q is
output, K and L are inputs of capital and labour, respectively. The equation tells us that
output (q) depends directly on K and L, and that part of output which cannot be explained
by K and L is explained by A. Here A is the residual factor which stands for technical
change.

Now, if we assume that o + 3 = 1 so that = 1 — a, we can get a simpler form of the
Cobb-Douglas production function. The function then takes the specific form :

q=AKeLl* (0<a<1)

Taking this simple, specific form of the Cobb-Douglas production function, we shall
now consider the major properties of this function.

Property 1 : There will be no output if both the inputs are not employed. That is, g
= 0 if either K =0 or L = 0. This means that both the inputs are necessary to have any
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output. There will be no output if only one input is used, no matter however large it is.

Property 2 : The simple and specific form of the Cobb-Douglas production function
exhibits constant returns to scale (CRS) or it is homogeneous of degree 1.

Proof : We have the simple form of the Cobb-Douglas production function : g = AK*1-

Now, to examine its degree of homogeneity, we increase both K and L by A times.
The new value of output, say, g* = AAK)*(AL)I-o = potl-a AKa 1-a=)1q=12q

Thus, the given function is homogeneous of degree 1. If we increase K and L by A
times, output also increases by A times. Thus, the simple form of Cobb-Douglas
production function exhibits CRS.

Property 3 : If the Cobb-Douglas production function is of the form, q = AK«L1-«
(0<a<1),then AP, AP , MP,, MP _will be diminishing or their slopes will be negative.

Proof : We have, g = AK*LI-¢(0 < o< 1)

Now to consider the slopes of AP, , AP, , MP, and MP , we first derive their equations.

Total output _ g _ AK“L™

AP, = = AKe-1| 1o
K K K
ay 1-a
AP, = Total output _ g _ AK"L — AKaL-a
L L L
5
MP, =— = a-1] 1-a
< =3K o AKo-1L1=2 and
aq
MP, = Fi (1 - a)AK® L1-0-1 = (1 — o) AK® L@

SAP,
Now, slope of AP, = SK - (o —1) AK2 L l-e<0as0<a<1

. SAP,
Similarly, slope of AP_ = SL - aAK* L-1<0as0<a<1

dMP
Now, slope of MP :S—KK =oo—-1)AK2 LI-e<Qasa< 1

MP,
dL
Thus, if g = AK*L1-%, then AP, ., AP, , MP,., MP_all are negatively sloped or they are
diminishing.
Property 4 : Under Cobb-Douglas production function, marginal productivities of

and slope of MP_ = “=a(l-o)AK* Le1<0asO0<a<1
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K oq

" q-aK:oci.e.,eK:oc.

8
Similarly, a—ﬂ = (1 - a)AKeLe = (1 - oc).%

L dq

a-a—L: (1-o)or,e, =(1-a)

Thus, elasticity of output with respect to K is o and elasticity of output with respect
toLis(l-a).

We can prove this in a slightly different manner.

a
Kog pk  MP,
qK 4 AR
K

Now, putting the values of MP, and AP, obtained in property 3, we get

MP, o AK*ILe
K= AP, AK®LLte —¢

We know, €, =

e

aq
imi L oL MP
Similarly, eL:—,a_q:i: L
qoL 9 AP

—

Now putting the values of MP_and AP, from property 3,

(1- o) AK“L®
we get, & == < =

We can also prove our property by using log-definition of elasticity. We know that
elasticity of q with respect to K,

=(1-w).

dlogq dlogq
e = 1~1 1 =
<~ SlogK and elasticity of g with respectto L, €_ SlogL

Now, we have, g = AK«L1-
Taking log of both sides, we get,
logg=logA+alogK+ (1-a)logL

:8Iogq
dlogK

Now, e, =0+0.1+0=a
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Similarly, e, = g:ggﬁ =0+0+(1-0)l=(l-a)
g

Property 6 : If g = AK2L1-2, then oo and (1 — o) represent respective input shares if
factors are paid according to their marginal productivities.
Proof : We have, q = AK#L1-«

AKaLl—a
- MP, = = gk ez 2R = g 8
5K K K
Similarly, < = (1 - o) AKeLI--t = (1 = o) AR gy
Y 5L - i

We have been told that P, = MP, . and P = MP_

q
o—.K
Now, share of K in total output = "xK _ MPcK _ "™ _
q q q
N _ b -l
Similarly, share of L in total output = "= _ L _ (1-a)-
q q

Thus, a.and (1 — o) represent respective shares of capital and labour in total output.
Property 7 : Under Cobb-Douglas production function of the form q = AK*L1-2,
total product will just be exhausted if factors are paid according to their marginal
productivities. In other words, if g = AK*L1-%, then Euler’s theorem will hold.
Proof : Our production function is : q = AKoL1-,
a. AK“ L

Now, M = 88—2: o AKe-1 | 1o = T = O(..% .

ap l-a
Similarly, MP_ = S_E = (1 - o). AKeLL-o-1 = (1 — @), a.AK"L
We are also given that P, = MP, and P, = MP, .

Now, total payment to factors, K and L,

_ _ _. 4
=P K+PLL=MP K+ MPLL=0 K+ (1—0().%.L

=(1-0).;

=ag+ (1-o)q=qg(a+1-a)=q=Total output.
Thus, total output or total product (TP) will be exhausted if factors are paid according
to their marginal productivities. This is known as product exhaustion theorem. This is
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also called Euler’s theorem. The product exhaustion theorem is actually a corollary of
Euler’s theorem. In our earlier section (section 2.9.3) we have considered this corollary
which states that if the function q = f(K, L) is homogeneous of degree 1,

o

w
thenK.— =1.
ak g=q

aL

Thus, the case of product exhaustion under Cobb-Douglas production function is
just an application of the corollary of Euler’s theorem. Hence, the product exhaustion
theorem is loosely called Euler’s theorem.

Property 8 : Under Cobb-Douglas production function, elasticity of substitution is
equal to unity.

d(K/L)
) " TR __KJ/L
Proof : Elasticity of substitution, ¢ = d(MRTS)
MRTS
d(K/L)
o o= K/L _d(K/L) MP_/MP,
"7 d(MP_/MP,) "~ K/L 'd(MP_MP,)
MP, / MP,
Now, from our Cobb-DougIas production function g = AK*L1-*, we have obtained,
Mp, =8 _(1— a) 9 and, Mp, = 9
oL oK K

MP,  (1-0)g/L 1-a K
MP,  a.q/K a L

d MP | _1-a ad( j
MP, o L

Putting these values in the expression of elasticity of substitution, we get,

So,

d E 1-a
d(K/L) |\/|P /MP _ L o
K/L d(MP /MP) E . Ocd
L o

=1 (proved)
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Alternative proof : In terms of log-definition, the elasticity of substitution is given

=0

by, 6 =—7F7—~
¥ © MP,
dlog L

MP,

MP,  (1-0)g/L_1-a K
MP,  a.q/K a L
Taking log of both sides, we get,

lo MR, =lo (1_—&)+Io (Ej
Imp, )~ N IL
K MP, 1-o
or, log| — | =1 L | _jogl =%
ol - -2

Now, elasticity of substitution, ¢ = dlog(K/L)  _ 1-0=1 (proved)

~ dlog(MP_/MP,)
Property 9 : Under Cobb-Douglas production function, the expansion path is a
straight line passing through the origin, provided input prices are fixed.
Proof : An expansion path of a firm is the locus of successive tangency points between
the isoquants and the parallel iso-cost lines. Hence, at each point on an expansion path,
. . . MP, P MP
slope of isoquant = slope of iso-cost line i.e., ——= = —— or, —L = P
MPK PK MPK PK
This is the equation of an expansion path. Now, when q = AK“L1-¢ we have,
5 q aq q
= — = 0.— =—=01-«a —.
MPy = = @i and MP, = = (1-a)
Putting these values of MP,. and MP, in the equation of expansion path, we get,

Now,

1-a)d
LT or——= 2=t k=—2 L
w94 P a P« 1-a P,
K
This is an equation of a straight line passing through the origin. Hence, under Cobb-
Douglas production function, the expansion path will be a straight line passing through

the origin.

P l-a K_ P, o P
L
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Property 10 : Under Cobb-Douglas production function, isoquants will be downward
sloping and convex to the origin.
Solution : We have the Cobb-Douglas production function, g = AK2L1-«, This
function has 3 variables : q, K and L. So, to plot this function, we require a three-
dimenstinal diagram. To avoid it, we assume ¢ as fixed at a certain value, say, d,. This
d, amount of output may be produced by different combinations of K and L. The locus
of all such combinations of K and L which can produce a certain g, level of output form
an isoquant or an equal product curve. So, the equation of an iso-quant under Cobb-
Douglas production function is : g, = AK®L!-%. It now involves two variables : K and
L. We may plot it on a two dimensional diagram measuring K along the vertical axis
and L along the horizontal axis. In other words, we may plot it as K = f(L). So, we
express the isoquant g, = AK“L1~* as K = f(L).

We have, AKeL1- = q

o ot
or, K“ Z(%jl_al’ or, K* :(%] Le ,(0<a<l)
A A

1
. dK (X.—l q a a1
Now, slope of the iso-quant= —=| —= || =% | . , 5 t<0.
P AT (a ](A] L

Here j_li <0 as a < 1. Thus an isoquant under Cobb-Douglas production function

dK
will be negatively sloped. To know its curvature, we have to differentiate d—qurther

with respect to L. That will give us the change in slope of the isoquant.

1
. _d(dK) K (a-1 a-1)(do )¢ w1,
The change in slope = dL(dL] E —( . —1]( " ](K] L

1 1
= —l(a—_lj(q—‘)]a .L%l_2 = ll_—a(q—‘)]a .L%l_2 >0as0<a<1
al o A o o A

This implies that the slope of the isoquant rises. But its slope was originally negative.
So, it implies that the absolute slope of the isoquant falls. This will happen if the isoquant
is convex to the origin. Thus, under Cobb-Douglas production function, the isoquant
will be convex to the origin (proved)

The general form of the Cobb-Douglas production function as we have mentioned,
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is: q=AK*LP, o + B Z1. Its major properties are mentioned below. We are not deducing
the proofs of those properties; they are being left to the students as an exercise.

Property 1 : The Cobb-Douglas production function of the form q = AK“LP is
homogeneous of degree (o + B). If o + B > 1, it will display IRS. If o + 3 = 1, it will
show CRS. If . + 3 <1, it will imply DRS. Thus, the general form of the Cobb-Douglas
production function can exhibit all three types of returns to scale.

Property 2 : Under Cobb-Douglas production function g = AK“LP, o and B represent
elasticities of output with respect to capital(K) and labour(L), respectively.

Property 3 : In the production function q = AK*LB, o and B represent the share of
capital and labour in total output, respectively, if factors are paid according to their
marginal productivities.

Property 4 : If the Cobb-Douglas production function is of the form q = AK*LP,
then marginal productivities will be homogeneous of degree (o + B — 1).

Property 5 : Under Cobb-Douglas production function q = AK®LP, the elasticity of
factor substitution is unity.

Property 6 : The Cobb-Douglas production function g = AK®LP can be represented
by downward sloping convex isoquants.

Property 7 : Under Cobb-Douglas production function g = AK“LP, the expansion
path will be a straight line passing through the origin, provided input prices are fixed.
Let us consider some examples related to the Cobb-Douglas production function.

1 4

Example 2.25 : The production function is : ¢ =80K®5L5 . What will be the shapes of
AP, MP, AP _and MP, curves?

1 4
Solution : We have, q =80K>L?
1 4
q 80KSLS 44
Now, AP, = K=K = 80K °5L5, and
8q 1 4 44
MP, = 80K5 L5—16K 515
KT 8K 5

4., 4 9 4
SAP :—%XSO.K 5 15 =_64K 515 <0

Now, slope of AP, =

- 5q) &%
Similarly, slope of MP, = —M =
iy e of i = - - 31] 59
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4 4 9 4
- Aaek st ~ Bk <o
5 5
We see that slopes of AP, and MP, curves are negative. Thus, AP, and MP, are
diminishing, if more of K is used. Similarly we can show that AP, and MP, will be
diminishing if more of L is used.

Example 2.16 : The production function is g = 30K2L3. Derive the expansion path of
the firm if P, = 10 and P = 20.
MP, P

. . L
Solution : Along an expansion path, MP, P,

Now, we have, g = 30K2L3

K

MP, = 2—2 — 2% 30KZ L3 = 2x 30K L®

MP ZS_E: 2x30K?L* ! =3x30K?L?

L

Further, we are given that P, =20 and P, = 10
Putting, these values we get the equation of the expansion path.

MP R 8x80KL* 20 3K
MP, Pc 77 2x30KL® 10 2L

4
or, K= L o, K= §L . This is our desired expansion path which is here a

straight line passing through the origin.
1 3

Example 2.17 ; Let the production function be : Y = 12K*L*

Calculate the elasticity of substitution.
Solution : The elasticity of substitution is given by the formula,
o 4(K/L) /d(MP /MP) _d(K/L) ~MP /MP
K/L MP, / MP, K/L ~ d(MP_/MP,)

1 3

Now, we have, Y =12K?4|4

1,3 33
MP, = Z—Z=%X12-K“ o= 3K 4L
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1 1 33
Mp. = Y 8 oKL oKL = 3K AL
L™ 5L 4
11 13
so MPL_9KIL® KT g K (MR LK
' MP 303 31 L 7 iwmp ) L)
K 3K 44 44 K

. MP, MP, ) .
Putting the values of MP and d in the formula of o, we get,
K MP,
_d(K/L)  3(K/L)
T K/L *3d(K/L)
Alternative method : The formula of elasticity of substitution can be written as,
_ dlog(K/L)
°~ dlog(MP_/MP,)

=1(Ans)

Now, we have got, MP, = 35
MP, L

Taking log of both sides, we get, log ['\'\jg ] =log 3 + log (%)

K

K MP.
or,log| — | =lo L | —log 3
Q(L] g[MP ] g

K

dlog(K/L)
dlog(MP_/MP,)

Now, elasticity of substitution (c) = =1-0=1(Ans)

2.11 CES Production Function and its Properties

The CES production function is a neoclassical production function that displays constant
elasticity of substitution. In other words, the production function or the production
technology has a constant percentage change in factor (e.g., capital and labour) proportions
due to a percentage change in marginal rate of technical substitution (MRTS). This
function has been developed by Arrow, Chenery, Minhas and Solow in a celebrated
paper in 1961. The formal equation of the CES (constant elasticity of substitution)
production function is :
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1

qg A K (I )L  whereq=output,

K = capital, L = Labour (A >0, 0 <a <1, 0= p >-1). This function has three
parameters : A, a and p. A indicates the state of technology and organisational aspetcs
of production. Hence A is called technological parameter. o determines the relative
factor shares in the total output and so o is called the distribution parameter. The value
of p determines the elasticity of substitution between inputs. Hence p is called the
factor substitution parameter.

The CES production function has some important properties. We consider its major
properties one by one :

Property 1 : The CES production function is homogeneous of degree one or exhibits
constant returns to scale.

Proof : We have the CES production function, ¢ A K (1 )L

Now we increase both K and L by A times in order to see the degree of homogeneity
of this function.
The new output level, say, g* is then
1

=A (K) @ )L

1

1

= PA[K T+ (L-o)L? ] =ALg=2g

So the given CES production function is homogeneous of degree one. Hence the
function displays constant returns to scale (CRS). We see that if we increase both K and
L by A times, output (q) also changes by A times.

Property 2 : Under CES production function, MP, and MP_are homogeneous of
degree zero.

1
Proof : We have, g = A[aK™ + (1-o)L?] »

1

8 1 -=-1
Now, MP, =— or,f, =—=AlaKP+(1-a)LP | P ".a(-p)K P
<=5k O fk =5 | Lol | (
(+p)

= aA[aKP +(1-a)LP| » K@+

5 1
Similarly, MP, = a—ﬂ =f = —%A[aK‘p +(L—o)L?] 7 (L= o)(—p) L
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1+
- 1-0) A [k + A-o)lo] 7 L
In order to determine the degree of homogeneity of MP,. and MP,_we increase both
Kand L by A times. The new MP,, say,
(+p)
p

MP. = aA[a(tK) + (- a)(L)?] 5 (uK)e9

K

1+p

= pL+p) ) ~(+p) .aA[a(xK)—P +(1- a)L—p] p K1) =10 MP, = MP,

Thus, MP, is homogeneous of degree zero.
Similarly, the new MP,, say,
@)
MPT 1 )A (K @ )L (L«

L

(+p)
= A00) j o) (1 — oc)A[ocK"’ +(1- a)L—p]‘Tp L@ =A0MP_=MP,.

Thus, MP, is also homogeneous of degree zero. If both K and L are changed by
proportion, their marginal productivities remain unaffected.

Property 3 : Under CES production function, if the factors are paid according to
their marginal productivities, then total product will be exhausted. In other words, product
exhaustion theorem or Euler’s theorem will hold under CES production function.

. 60 , 99 _ _
Proof : Here we have to prove that K'a_K+ L'ES_L =q ie, KMP +LMP =q
or, using a different notation, we have to prove,
Kf,+Lf =g (1)
1

Now, we have, g =[aK™ +(1—o)L?] >,

. 0q 1 - i L
Now, MP, =5k =Tk = _EA[(XK P+(1-a)L "] P o(l-p)KEP

A1+p _(1+p)
This can be written as, f,, = a.F[aK‘P +(1- a)L—P] P K-A+p)

o q1+p o q 1+p
- porn = ®)

Similarly, MP, —E f ia kK @ )L

]

@ )L !
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+1 _M
A" [aK™ + @-o)Le] o L

A

=1-o).

_1-0( ql+p_(1_a) glﬂD
TOA T Ar \L)

Now, putting the values of MP, and MP, in the LHS of equation(1),
1+p 1+p
1-a

= %p[aK-p +(1-o)L"]

1
= g A [aK + (1 - o)) »
= gl*r.q? = qt*r-P = g = R.H.S of equation (1)
Atternatively, we have,

q1+p
Kf +Lf =——[aK™+{1-a)L"]

AP

Now, our production function is :

q=A[aK™+(1- oc)L‘P]_%

or, % = [ocK‘p +(1- (x)L‘P]_%

A
Putting this value we get,

q1+p q -p B ql+p—p
AP (_] T OAPP

. (ﬂj_p = oK + (- a)L".

Kf +Lf = = (g =Total product (Proved)

A

Thus, we see that if factors are paid according to their marginal productivities under
CES production function, then total payment to the factors = K.f, + L.f_ = q. In other
words, total product (= q) is just exhausted. In other words, Euler’s theorem or product
exhaustion theorem holds under CES.

Property 4 : Under CES production function, marginal productivities of inputs are

positive but diminishing.
1

Proof : We have, q = A[ocK‘p +(@-a)LP TE.
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_9q 1 L
Now, MP, =f = —EA[ocK“’ +(@-o)L*] " a(-p) K*?

~ 8K
—(1+p)
= L AWP) [KP + (L-a)LP [ P K
AP
1+p I+p
- o g = o & >0
T AP K+ AP K

_dq 1 _ Tt —p-1
Similarly, MP_ =< =fL _—EA[OLK P +(1-a)L p] P (l—a)(—p).LP

1- ~(1+p)
= 2 AL [qKP +(Q-a)lP] P LGP
AP

_l-a q(“") 1-a(q 1P 0
AP LIt AP (E] >
52q

S
Now, slope of MP, = SK( qj fuk = SK2

oK

geo(gf[i

Now, from Euler’s theorem we know that f,.K +f .L=q
So, f .K-q=-f .L<0asf >0, So, slope of MP i.e., f ., under CES production
function <0, i.e., MP,, or f, is diminishing.

S 82 _1 o q) fol-9
Similarly, slope of MP, = SL( q] f. =24 = 4+ )(Lj{ ) }

SL SL2 L2

Again, from Euler’s theorem, we have, f K+ f L =g
or,fL-q=-f K<0asf, >0.

So, slope of MP, i.e., f | under CES production function < 0. i.e., MP_or f is
diminishing.

Thus, under CES production function, MP, and MP, are positive but diminishing.

Property 5 : Under CES production function, the expansion path of the firm is a
straight line passing through the origin, provided input prices are fixed.

Proof : We know that along an expansion path, slope of isoquant = slope of iso-cost
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MR Lol
MP, P, MPy P

Now, under CES production function, we have got,

_ I+p 1+p
mp, =1 a-(%) and MP, =%.(&]

line, i.e, —

AP K

1
1__(1‘ (ﬂj P l K 1+p P
. ' p —a
Putting these values we get, %: o or, T(—] =
o

1 1
1+p 140 14p
K o P K P PP
L A S PN B A
L 1-a P, L (1-a P l1-a P,

This is the equation of the expansion path under CES production function. Clearly,
this is a straight line passing through the origin. Hence, under CES production function,
the expansion path will be a straight line passing through the origin.

Property 6 : Under CES production function, isoquants will be downward sloping
and convex to the origin.

Proof : We know that if the production function is : g = f(K, L) then the equation of
a particular isoquant representing a particular level of output (say, q,) is, q, = f(K, L).

A 4+ M g1

- - - - - d —_ 1
Taking total derivative of this function, we get, dq, 5K oL

=MP,.dK + MP_.dL

Or, using a different notation, dq, = f, dK + f dL.

Now, along a particular isoquant, q,, the level of output is fixed i.e., dg, = 0. So, we
have, f..dk + f dL = 0. If K is plotted vertically and L is plotted horizontally while

dK
drawing an isoquant, then the slope of the isoquant is a Thus, we have,
f.dK+f.dL=0 or f.dK=-f .dL
So aK or slope of the isoquant = L MR
TR auant == TP,

Now, in the context of CES production function, we have obtained,
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1_(1 q 1+p o q 1+p
MPL:fL: Ap (Ej and MPK:fK: F(E)

_ 1+p 1+p _ 1+p
So de__h_ 1 a.(q] a(qj :——1 = K <0
rdl f, A” (L AP\ K o \L

Thus, slope of an isoquant obtained from the CES production function is negative
.e., the isoquant will be downward sloping.
To know the curvature of the isoquant we have to know the change in slope due to

. . i d (dK d’K
change in L, i.e., we have to know the sign of 7—| 7, | ofr —

dL{ dL dL2 -
. d’K d (dK
So, change in slope = —- :

gLz _dL LdL
dK
ol —.L-K.1
e LI E
L L
1-a) (K™
P E

o L2

p(a—aQ(KTmL+K
11§a+m(%] o AL >0

This implies that slope of the isoquant will increase or the absolute slope (= MRTS)
will be diminishing. This again implies that the isoquant obtained from the CES
production function will be convex to the origin.

Property 7 : Under CES production function, the elasticity of factor substitution is

1
a constant and is given by m . [That is why the function has been named as CES or
constant elasticity of substitution production function]
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Proof : We know that elasticity of factor substituion, say,

_dlog(K/L)  dlog(K/L)
dlog(MRTS) dlog(MP_/ MP, )
Now, under CES production function we have,

1_(1 q 1+p o q 1+p
MP, = Ap (Ej and MP, = F(E]

1—(1, g 1+p
MP, A L 1-a (ET*"

Hence, L = = ,
MPK a(q P (0
AP K

Now taking log of both sides, we have,

MP _
log [—MP:] = |ong°°+(1+ p)log(%]
(Ej_ MP_ (1—_0‘]
or, (1 +p) log L = log MP, —log o

Ky 1 MP_ 1 (1_(1]
. log L —l+p.log MP, —1+p.log o

Now, elasticity of factor substitution,

K
dlog(j
P UV o
dlog(MPL] P P
MP,

Thus, the elasticity of factor substitution under CES production function is a constant

. 1
and is equal to —.
1+p
Its magnitude will depend on the value of the parameter p as follows :
()If-1<p<1l,thenc>1
(i) If p =0, the o = 1 i.e., elasticity of factor substitution = 1. This happens under
Cobb-Douglas production function where ¢ = 1.
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(i) If0<o <o, theo <1,

In fact, CES production function is a general case of Cobb-Douglas type production
function. All the major properties of Cobb-Douglas production function holds in the
case of CES production function except in the case of elasticity of factor substitution.
In the case of Cobb-Douglas production function, the elasticity of factor substitution =
1. while in the case of CES production function, the elasticity of factor substitution =

1

E' We may note that this value will tend to 1 as p — oc. Thus, Cobb-Douglas

production function is a special case of CES production function when the parameter
p — .

Let us consider some examples on different properties of CES and Cobb-Douglas
type production functions.

Example 2.28 : Examine whether product exhaustion theorem will hold if factors are
paid according to their marginal productivities and the production function is :

1

a b . - .
q= T Kk Also determine the elasticity of factor substitution.
1
. : . a b :
Solution : We have the production function, q = . k It can be rewritten as :
1
g= aL bK . Thus the given production function is of standard CES form. So

in this case, Euler’s theorem or product exhaustion theorem will hold. Further, in this
case, elasticity of factor substitution will be equal to unity. (Prove yourself)

. o 1 1 . -
Example 2.29 : Production function is given as q :10_E_E' Determine elasticity

of factor substitution(c).

_ 1 1 - _—
Solution : We have, q :10_E_E' We know that elasticity of factor substitution,

K

dl —

) OQ(L]
o)

dlog(MPLj
MP,
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o 1 aq 1
NOW, MPL__:_Z MPK _S—K:P

1 2
MR 17 K (K
“mMp, 112 (L

K2

Taking log of both sides, we get,

log| L | =2 (5] ! (Ej—ll [MPL]
0g MP, ) og\ | orlog| | =7 log MP, |-
dlog(t]

Now, elasticity of factor substitution = 6 = ———<=—

dlog(MPL] 2
MP,

So, elasticity of factor substitution in this case in equal to half.

Example 2.30 : Will product exahaustion theorem hold if 0 =+/o.L? +BK? and factors
are paid according to their marginal productivities?

1
Solution : We have, q = (ch2 +BK2)E.

;(alf 4 BK?)? (20) L

Now, MP, :6_q: _ o.gqL
oL al? +pK? al® +BK?®
similarly, Mp, =29 —__PAK__
0K oal®+BK
Now, total payment made to L and K'is = L.MP + K.MP,
2 2 2 2 2 2
oqL N BgL _ ogL” +BgK® _ g(al” +BK?) —q=TP.

S alZ+BK? al?+BK? al’+BKZ  (al®+PK?)
So, total product is exhausted if the factors are paid according to their marginal
productivities when the production function is q = \/aL2 + BK? . In fact, here the given

production function is homogeneous of degree 1 (please check) and hence total product
exhausts.
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2.12 Summary

1. AVERAGE AND MARGINAL FUNCTIONSAND THEIR USES

In Economics, we very often use the concept of function. For example, we have demand
function, supply function, production function, cost function, revenue function, profit
function, consumption function, saving function, investment function and so on. Ify =

f(x), then Y s called the average function. That is, average function gives us value of
X

the dependent variable (y) per unit of the independent variable(x). On the other hand,
marginal function is the first order derivative of the function y = f(x) i.e., marginal

d
function of y = f(x) is d—ior f'(x). It gives us the change in the value of dependent

variable due to one unit change in the independent variable. There are various uses of
average and marginal functions in Economics. In particular, concepts of average and
marginal functions may be used to know the elasticity of dependent variable with
respect to its independent variable. For example, using the concepts of marginal and
average functions we can know the price elasticity of demand, income elasticity of
demand, cross (price) elasticity of demand, elasticity of cost and so on.

2. MAJOR APPLICATIONS OF DERIVATIVESIN ECONOMICS

d
If y = f(x), then its first derivative is given by d_i or f'(x). This derivative has so many

uses in Economics. It is used to determine different types of elasticities. More importantly,
the derivative helps us to know the marginal value of a variable which is so important
in economic decision-making like profit maximisation, cost minimisation, etc. Further,
derivative helps us to know the slope and curvature of a function.

3.RELATION BETWEEN PRICE ELASTICITY OF DEMAND AND TOTAL
EXPENDITURE OR TOTAL REVENUE

Total expenditure of the buyer or total revenue of the seller is price x quantity of output
bought or sold i.e., TE or TR = p x q. If p falls, g rises if the law of demand holds. But
TR or TE may rise, fall or remain the same. That depends on the value of price elasticity
of demand.

4. CONSTANT EXPENDITURE OR OUTLAY CURVE

As the very name suggests, constant expenditure or outlay curve is such a curve that
expenditure or outlay of the consumer on this curve is constant. In this case, the demand
curve is a rectangular hyperbola. Such a curve is also called unit-elastic demand curve.
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It is so called because the value of price elasticity of demand at every point on this curve
IS unity.

5. RELATION AMONG AR, MRAND PRICE ELASTICITY OF DEMAND
There is a standard relation among AR, MR and price elasticity of demand (g,). It is :

1 1
MR :AR{l—m] = p[l—m] as p is always equal to AR (i.e., p=AR).
d d

6. RELATION AMONG TR, MRAND PRICE ELASTICITY OF DEMAND

The relation may be expressed by 3 statements :

(i) When |e,| > 1, MR > 0 and TR will rise with the rise in g or fall in p.

(ii) If |yl < 1, MR < 0 and TR will fall with the rise in g or fall in p.

(iii) If |e,] = 1, MR = 0, and so TR will remain the same due to rise or fall in price or
quantity.

7. ELASTICITY OF FACTOR SUBSTITUTION

The elasticity of factor substitution measures the percentage change in factor proportion
due to one percent change in the marginal rate of technical substitution (MRTS).

8. HOMOGENEOUS PRODUCTION FUNCTION AND ITS PROPERTIES

Aproduction function Y =f(K. L) is said to be homogeneous of degree n if f(AK, AL) = A".Y.
The constant n is called the degree of homogeneity. Ahomogeneous production function
has some important properties. First, if the production function is homogeneous of
degree n, then the marginal productivities of its inputs will be homogeneous of degree
(n-1). Second, if the production function is homogeneous of degree 1, then its marginal
productivities will be homogeneous of degree zero, or the marginal productivities will
depend only on input ratio.

9. HOMOGENEOUS PRODUCTION FUNCTION AND RETURNSTO SCALE

The concept of homogeneous production function may be used to show different types
of returns to scale. If the production function is homogeneous of degree 1, it will display
constant returns to scale. If the degree of homogeneity is greater than one, it implies
increasing returns to scale. If the degree of homogeneity is less than one, it implies
decreasing returns to scale.
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10.HOMOGENEOUS PRODUCTION FUNCTION AND PRODUCT
EXHAUSTION THEOREM

If the production function is homogeneous of degree one and if the factors of production
are paid according to their marginal productivities, then total product will be exhausted.
This is known as Euler’s theorem or product exhaustion theorem.

11. COBB-DOUGLAS PRODUCTION FUNCTION AND ITS PROPERTIES

The specific form of the Cobb-Douglas production function is : g = AK*L1-%, 0 <a <1,
where g = output, K = capital, L = Labour, A stands for technology (A >0). This function
has the following important properties :

(1) This function is homogeneous of degree one or subject to constant returns to scale.

(i) AP, AP , MP, and MP,_ all are diminishing.

(iif) MP, and MP_ are homogeneous of degree zero or they depend only on input
ratio.

(iv) The expansion path under this curve is a straight line passing through the origin.

(v) The elasticity of factor substitution is equal to unity.

(vi) Isoquants under Cobb-Douglas production function will be downward sloping
and convex to the origin.

The general form of the Cobb-Douglas production function is : q = AK*L5,
a + B2 1. This function is homogeneous of degree (o + ). There will be IRS, CRS or
DRS according as (o + B) 2 1.

12. CESPRODUCTION FUNCTION AND ITSPROPERTIES

1

The CES production function canbe writtenas, = A K (1 )L  ,0<a<l,
A>0,0=p>-1

This function has the following characteristics :

(i) It displays CRS or it is homogeneous of degree one.

(if) MP, and MP, are homogeneous of degree zero.

(iii) Total product will be exhausted if factors are paid according to their marginal
productivities.

(iv) Marginal productivities are positive but diminishing.
(v) Isoquants will be downward sloping convex .
(vi) Elasticity of factor substitution is constant.
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2.13 Exercises

Short Answer Type Questions (Each of 2.5 marks)

Define average and marginal functions.

Express price elasticity of demand in terms of average and marginal functions.
Show that elasticity of cost = MC/AC.

Define income elasticity of demand in terms of average and marginal functions.

Show that elasticity of consumption with respect to income is the ratio of MPC and
APC.

What is the shape of a unit elastic demand curve?

Give the log-definition of price elasticity of demand.

Define income elasticity in terms of logarithms.

State the relation among AR, MR and price elasticity of demand.
10. Define elasticity of factor substitution.

11. What is homogeneous production function?

12.What is linearly homogeneous production function?

13. Give the specific form of Cobb-Douglas production function exhibiting CRS.
14. Give the general form of the Cobb-Douglas production function.
15. What is Euler’s theorem?

16. State the product exhaustion theorem.

17. What is the value of elasticity of factor substitution under Cobb-Douglas production
function?

18. Give the expression of CES production function.
19. Who are the contributors of CES production function?
20. Why is the CES production function so named?
21. What is the value of elasticity of factor substitution under CES production function?
22.What are the parameters in CES production function?
23.What do the parameters of the CES production function represent?
24. Determine the degree of homogeneity in the following cases :
(i) q=K3+3K2L +3KL?+L3

2 2

[Eard

SIS

© ©® N o

(i) q=
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(i) q=yAK?+BKL+ L2

] K
(iv) Y:F
(V) 9= KL
i ax? + 2hxy + by?
(vi) q= Yo
cxX +dy

(vii) 4= (BK* +al*) ®
(viii) g = o /K +pVL
(iX) z=x}+4x2x, +2X}

0.3,,0.7
1 X2

() gq=x
(xi) q= 20K15 |05
(xii) z= Ax)x; “
(xiii) g = AK> LP
(Xiv) Y =x¢x; “ +bx, +ax,
ax,
@WZZEg
25. What is the degree of homogeneity of the demand function, q = AP~ MB?
26. What is the value of MR if AR = 30 and [e| = 2?
27. What is the value of |e| if AR = 100 and MR = 75?
28. What is the value of AR if MR = 100 and |e,| = 5?
29. What is the value of p if MR = 200 and |e,| = 57
30. What is the value of [e | if p = 30 and MR = 0?
Medium Answer Type Questions
1. Define average and marginal functions. How can they be used to determine elasticity?
Give examples.
2. The demand function is : g = ap~*. Determine price elasticity of demand.

3. The demand function is : D = 74 — 2p — p2. Calculate price elasticity of demand
when D = 50.
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4. The demand function is : q = Ap~*MP (where q = amount of demand, p = price,
M = Income and A, a and 3 are constants). Determine price and income elasticities
of demand.

5. Calculate price elasticity of demand in the following cases :

_ 50 . _60
(i) pP=— (i) X=—  (iii) px=120
X p
, - , . 200
6. Calculate price elasticity of demand if the demand function is x = —-.
p2

7. Let the demand functionbe :aq + bp—-k =0
If MR =0, what is the value of e,?

6 2
8. The demand function is : :%er where y = income, show that 1 < e,<2

9. Deduce the relation among AR, MR and [e,|.

10. Determine the slope of an indifference curve from a given utility function and define
MRS.

11. How can you derive the slope of an isoquant from the production function? Define
MRTS.

12.Prove that if a production function is homogeneous of degree n, then the marginal
productivities of inputs will be homogeneous of degree (n - 1).

13. Show that if the production function is homogeneous of degree 1, then marginal
productivities of its inputs will be homogeneous of degree zero, (or the marginal
productivities of its inputs will depend only on input ratio).

14. How is the concept of homogeneous production function related to the concept of
returns to scale?

15.Prove that under Cobb-Douglas production function the elasticity of factor
substitution is equal to unity.

16. Show that under Cobb-Douglas production function, isoquants will be downward
sloping and convex to the origin.

17. Let g = AK® L1-%, Show that AP, MP, AP, MP, will all be diminishing.

18. If the production function is Y = x{'x3 *, then prove that total product Y will be just
exhausted if factors are paid according to their marginal productivities.
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19. Let the production function be Z = Ax:x}. What do a and b represent?

20. Show that the degree of homogeneity under CES production function is equal to
unity.

21. Prove that under CES production function, the elasticity of factor substitution is a
constant.

22. The production function is x = KO-75 1925, Show that product exhaustion theorem
holds in this case.

23. Show that under Cobb-Douglas production function, the expansion path of a firm
will be a straight line passing through the origin provided input prices are fixed.

24. Let g = AK®LP. Deduce the expansion path of the firm taking given prices of K and L.

25. Determine the elasticity of factor substitution for the function : z = cx{x where x;
and x, are the amounts of two factors, X, and X,, respectively.

Long Answer Type Questions (Each of 10 marks)

1. Show that under diminishing MRS, an indifference curve will be strictly convex.

2. Examine the relation between price elasticity of demand and total expenditure of a
buyer.

3. Write a short note on constant expenditure or outlay curve.

4. Show that under the assumption of diminishing MRTS an isoquant will be convex
to the origin.

5. What is a homogeneous production function? State and prove its two major properties.

6. State and prove the product exhaustion theorem.

7. Prove that under Cobb-Douglas production function, (i) expansion path will be a
straight line passing through the origin, and (ii) elasticity of factor substitution will
be equal to unity.

8. State and prove two major properties of the CES production function.

9. Show that under CES production function, the elasticity of factor substitution will
be a constant.

10. Prove that under CES production function, (i) expansion path will be a straight line
passing through the origin, and (ii) isoquants will be downward sloping and convex
to the origin.

11. Prove that under CES production function the product exhaustion theorem will hold.

12. Prove that under CES production function, marginal productivities of inputs are
positive but diminishing.
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3.1 Objectives

After studying the unit, the reader will be able to know
e the maximum and minimum values of a function
e how the maximum and the minimum points can be determined
e the conditions for maximisation and minimisation of a function
e some applications of maxima and minima in Economics

3.2 Introduction

In Economics, we come across so many problems concerned with the target of
achieving maximimum or minimum value of a variable. For example, firms, in general,
want to maximise their profit. Sometimes a firm wants to maximise sales subject to a
minimum profit. Consumers want to maximise their utility subject to a given budget.
Similarly, a firm may seek to maximise its output, given the level of cost. In another
situation, it may want to produce a given level of output at the minimum possible cost.
Planners may want to ‘optimise” pollution level, government may want to optimise tax
revenue, and so on. Hence we should know how the maximum value or the minimum
value of any function can be determined. We should also know the conditions for
maximisation and minimisation of an economic variable. This unit seeks to throw light
on these issues.

3.3 Conceptsof Maxima and Minima of a Single Variable Function

Before considering the concepts of maxima and minima (togetherly called extrema),
we should first explain the concepts of increasing and decreasing functions. The function

d
y = f(x) is said to be an increasing function of x if d_i or f'(x) > 0. On the other hand,

d
the function y = g(x) is called a decreasing function of x if d_i< 0 or g'(x) < 0. For

example, in supply function S = S(P), supply(S) is generally an increasing function of
price(p). In the simple linear case, we may write, S = a + pp, (a, p are constants and

3 >0). Hence j—i =B >0. So, supply(S) is an increasing function of price(p). Taking an

example from macroeconomics, we may say that consumption (C) is an increasing
function of income (Y). That is, C = C(Y) such that in its linear form, C = a + bY,
(a>0, 0 <b<1). Onthe other hand, in the demand function, D = D(P), demand (D) is
a decreasing function of price (P). In its linear form, we may write, D =a - bp, (a >0,
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dD AC)A AC
b > 0). Here, o b < 0. So, demand(D) is a Y(AC)
decreasing function of price(P), provided the law of \ /

demand holds.

Again, a U-shaped curve is first decreasing up to a
certain value of the independent variable and then an
increasing function beyond that value. For example, a
U-shaped AC(y) curve (average cost curve) is first (Fig. 3.1)
decreasing up to certain level of output (x) and then an increasing function beyond that
level of output. In Fig. 3.1, we have given an example.

o'l 2 3 4 X

Example 3.1: Let y = 40 — 6x + x2 be the equation of an AC curve. Examine whether
the function is an increasing or decreasing function at x = 2 and at x = 4.

Solution : We have, y = 40 — 6x + x2

d—y=2X—6.
dx

dy
Whenx=2, — =4-6=-2<0
dx

d
Again, when x = 4, d—i:8—6:+2>0.

Thus, at x = 2, the AC function is a decreasing function and at x = 4, the AC function
is an increasing function.

It may be noted that if j—i =0, then we have, 2x-6 =0 or, x=3. So, at x = 3, the AC
function is neither increasing nor decreasing. At this point the AC function comes to a
standstill momentarily. This point is called stationary point and the value of the function
at this point is called stationary value. At x = 3, the stationary value of y (= AC) =
40 — 6 x 3 + 32 = 49 — 18 = 31. We shall take up the issue of stationary point when we
shall consider the issue of maxima or minima of a function.

We have mentioned that a u-shaped curve is first decreasing and then increasing
after some point. Similarly, an inverted u-shaped curve is first increasing and then
decreasing. For example, an inverted AP, curve (y curve) is first increasing up to a
certain level of labour employment (x) and then a decreasing function beyond that level
of employment. Let us give an example.

Example 3.2 : Let our average productivity of labour (AP ) curve be : y = 40 + 6x — X2
where y = AP, and x = amount of the variable factor, labour. Examine whether the
function is an increasing function or a decreasing function at x = 2 and at x = 4.
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Solution : We have, y = 40 + 6x — x?

d = AP,
wLogo2x YEAR)
dx
dy
When x = 2, d—X:6—2><2:2>0
So, at x = 2, the AP, function is an increasing :A‘PL
function. 0 2 3 4 X
dy Labour
Whenx=4,d—X:6—2><4=—2<0. (Fig. 3.2)

Hence, at x = 4, the AP, function is a decreasing function.

. . : , o . d
Like our previous function and the related figure, in this case also we see that if d—i =

0, we have 6 —2x =0 so that x = 3. Thus, at x = 3, the AP, function is neigher increasing
nor decreasing. At x = 3, the point on the AP, curve is the stationary point. The value of
AP _whenx=3is:y=40+6x—-x2=40 +6 x 3-32=49. This value of AP, is called
the stationary value of AP, (=y).

Let us consider the concepts of maxima and minima of a function of one variable.
Let y = f(x) is a smooth function i.e., it
differentiable everywhere. Its grphical formis given Y4
in figure 3.3. From this figure, we see that function
y = f(x) has a maximum value at A and a minimum i
value at B. The maximum and minimum values of
a function is called the extreme values y or extrema

y =f(x)

of the function. A S-S
We see from the figure that when x = x,, the ’ 5
value of the function f(x) reaches its maximum °© Xy X, X

value, say, y,. On the other hand, when x = x,, the .
' value of2 f(x) (Fig. 3.3)

Y1 C reaches its minimum. Then the value of y or f(X) is
minimum, say, ,. Ifthe domain (i.e., simply speaking,
feasible range of a variable) of the independent

A y =f(x) variable is quite large, other maximum and minimum

values may occur at other points. In our figure 3.4,

there are two maximum points, A and C, and two

B minimum points, B and D. Since point C is the highest

0 X maximum point, it is called a global maximum point.

(Fig. 3.4) The other maximum point Ais called local maximum.
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Similarly, point D is called a local minimum point and point B is called a global
mimumum point.
It should be noted that at all maximum and minimum points, slope of the function,

d
y = f(x) is zero, i.e, d—i: or f'(x) = 0. Thus, all maximum and minimum points are

stationary points. However the converse of this statement is not true i.e., all stationary
points will not ncecessarily by maximum or minimum points. That will be clear when
we shall consider the concept of point of inflexion in section 3.5.

3.4 ldentification of Maxima and Minima : First and Second Order
Conditions (or Necessary and Sufficient Conditions)

In the previous section we have given some idea about maximum value and minimum
value of a function. Let us consider the criteria for the identification of an extremum,
i.e., for the maximum or for the minimum. We here mention two alternative criteria for
this identification of the type of extremum. The simplest method of identification of the
maximum or the minimum value of a function is to observe the pattern of change of the
slope of the function.

Consider figure 3.5 and figure 3.6. We see that the function y = f(x) is maximum at A
in the first figure while y = f(x) is minimum at B in the second figure. However, in both
cases, j—i =1'(x) =0. So this is necessary condition for a function to be either maximum
or minimum i.e., to be an extremum. This condition is, however, not sufficient, since

d : - :
d_i or f'(x) = 0 is the condition for maximum or minimum value of the function.

VK Y1
A
y = f(x)
y = f(x) B
0 Xo )>( 0 ;(
(Fig. 3.5) (Fig. 3.6)

Hence a sufficient condition is required for the identification of maximum or minimum
value. In order to find out this sufficient condition, we have to observe, as we have
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already mentioned, the pattern of change of the slope of the function. In the figure 3.5,
we see that as we move from point O to X, the slope of the curve y = f(x) gradually falls

d
Y =f'(x) = 0 at x = X,. As the slope gradually falls,

and ultimately becomes zero i.e., i

d (dy d’y
we can say that change in slope is negative, i.e., 7~ ax\dx ) ©" o or f'(x) < 0. This is

the sufficient condition for maximisation.
Now, consider the sufficient condition for minimisation. In out figure 3.6, the curve

d
= f(x) is first a decreasing function up to x = X,. So within the range 0 to x,, d—i or

f'(x) is negative. Now as we move from point O to x,, the tangents drawn on the curve
becomes flatter and flatter. So, their absolute slopes fall. But the slopes are negative
and hence we shall say that slopes with negative sign are increasing. Hence, for
minimisation, the second condition is that the change in slope of the function y = f(x)

d(d d?
should be positive i.e., X (di] o 32/ or f”(x) > 0. This is the sufficient condition for

function y = f(x) to be minimum. Thus, to summarise our results, for a function y = f(x),

d
Necessary condition : (i) for maximum : d_i =f(x)=0

d
(if) for minimisation : d—if’(x) =0
- . . . d’y
Sufficient condition : (i) for maximum : d7: f'(x) <0
2

dy

(i1) for minimum : N =f"(x) > 0.

d
The necessary condition, d—iz f'(x) = 0 is usually called the first order conditon

since it is based on the first order derivative of the function y = f(x). The sufficient
2

.. d . :
condition —32/: f”(x) = O'is called the second order condtion.
dx

To clarify the identification or calculation of maximum or minumum value, we give
an example.
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Example 3.3 : Find the maximum and minimum values of the expression & — 3x2 — 9x + 30
Solution : Let y = x3—3x2-9x + 30

_ .. . d
For maximum and minimum value of y, the first order or necessary condition is : LA 0

dx
or,3x2-6x-9=0
or,x2-2x-3=0
or,x2-3x+x-3=0
or,X(x-3)+(x-3)=0
or, x-3)(x+1)=0
o X=either—1or3

d N
At these points, d—i = 0. So these are, so far, stationary values. To identify whether

they are extrema (i.e., maximum or minimum value of the function), we have to apply

- - . : : d?
the second order or sufficient condition. That is, we have to consider the sign of d%

d’y L Lo dYy
Here, e 6x — 6. For maximisation, the condition is : o < 0, and for
o L d’y
minimisation, the condition is : d_2> 0
X

. d’y
Now, if x = -1, then d7: 6x-6=-6-6=-12<0.

So, x = -1 gives the maximum value of the given expression.

Hence maximumy = (-1)3 - 3(-1)2-9(-1) +30=-1-3+9+30=39-4=35
o d’y
Again, if x = 3, then o =6x(3)-6=18-6=12>0

So, x = 3 gives a minimum value of the given expression.

The minimum value of y = (3)3 - 3(3)2-9(3) +30=27-27-27+30=3

3.5 Point of I nflexion

In terms of a graph or diagram, a point of inflexion on a curve is the point at which the
curve changes its curvature. This is a definition in simple terms. We may offer a technical
definition of point of inflexion on y = f(x). A point is said to be inflexional if at that
point, f”(x) = 0 and f"'(x) = 0. Thus, on the point of inflexion, f'(x) = 0 or f'(x) = 0. It
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does not impose any restriction on the sign of f'(x). If f(x) =0, f"(x) = 0 and f"’(x) = 0
at any point on y = f(x), then the point is said to be stationary and inflexional. On the
other hand, if f'(x) = 0, f"(x) = 0 and f"'(x) = 0, at any point on y = f(x), then the value
of the function at this point is non-stationary and inflexional. Again, we know that any

d
point on the function y = f(x) at which d—z =0, is called a stationary point or a critical

point. Thus, a point of inflexion may also be a critical point, but a critical point may not
be a point of inflexion. In our figures 3.7 and 3.8, point p is the point of inflexion while
in figure 3.7, point S is the critical point or stationary point. There is no critical or
stationary point in figure 3.8.

Let us give an example on point of inflexion.

y =1f(x) ‘ y =1f(x) y = f(x)
: y =f(x) S
0 X 0 X
(Fig. 3.7) (Fig. 3.8)

1
Example 3.4 : Determine the point of inflexion of the function y = f(x) :EX4 -3x°
. 1
Solution : We have, y = EX4 —3x?

d d?
Here Y 2x3 —6x and ay 6x2 — 6.

dx dx?

d*y d’y

N he point of inflexion, —-= —

ow, at the point of inflexion, o 0 but o 0
d’y
We put, d7:0, S0,6x2-6=00r,6(x2-1)=0 . x2=1or,x=%1.
d’y _ . o
We see that o =12x # 0. So, x = £ 1 give the points of inflexion

Whenx =+1,y= %(1)4 —3(1)? :%_3:_5

2
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1 1 5
Whenx=-1,y==-(1)*-3(1)*==-3=-=
Y=o -3 = -3=

. . ) 5 5
So, the points of inflexion are —1,—5 and 1,—5

3.6 Optimisation of Multivariate Function

The word optimum means the best situation or state of affairs. To achieve an optimum
is to optimise, i.e., to maximise or to minimise. So, optimisation is a process or an
attempt to achieve or to reach an optimum situation. Economic agents always try to
achieve this situation. For example, a consumer tries to maximise (optimise) utility. A
firm wants to minimise (optimise) cost or maximise profit. Now, we know that a
multivariate function is a function which has more than one independent variable. A
special case of a multivariate function means maximisation or minimisation of a function
involving two or more independent variables. In this section we shall consider the
conditions of maximisation or minimisation of a bivariate function having two
independent variables — a special case of multivariate function.

We shall consider the problem of optimisation (i.e., maximisation or minimisation)
under two situations : unconstrained optimisation and constrained optimisation. Those
techniques have been discussed in the next sections.

3.7 Unconstrained Optimisation or Optimisation without Constraints

In this case, the explanatory variables are independent. Let the bivariate function be

9%

y = f(x;, X,). This function has the maximum value if (i)% =f, =0 and EV f,=0,
1 2

These are necessary or first order conditions. The second order or sufficient conditions are :

dy oy ([ &y Y
ox2 ox2 | ox,0x,

0%y o’y
(i) a—Xlef11<0, 6_xfEf22 <0 and

or, f,,.f,, > (flz)2

For minimisation of the function, the necessary conditions or first order conditions are :

M gﬂ =f, =0 and gﬂ =f, =0. The second order or sufficient conditions are :
Xl X2
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2 2 2 2 2 2
T Y _ oy &y [ 0% )
(ii) e f, >0, o f,,>0and o o > ox, or, f,.F,, > ()
Let us consider the case when f,, f,, < (f,,)?.

We know that when f, = 0 and f, = 0 it implies a stationary point of a bivariate
function. Under this situation, if

(i) f,,f,, < f2 and f ; and f,, have different signs, the function will have a saddle
point at that situation.
(ii) f,f,, < £ and f,; and f,, have the same sign, the function will have an inflexion

11722
point.
fazyazy_ 7y, if f f =1f2,th b [ lusive. W
I o e\ oy, e, if f,f,, = f, the test becomes inconclusive. We cannot

say anything definitely.
Consider the following examples.

Example 3.5 : Find the maximum or minimum of the function,
Z=3X2+2y2—xy—4xy— Ty + 12

Solution : We have, z = 3x% + 2y? — xy — 4x — 7y + 12 = f(X, y).

0z 0z
We have, &Efx=6x—y—4and 5 =f, =4y-x-7
. oz 0z
Putting x orf =0and 5 :fy:O,weget, 6Xx-y=4,4y-x=7

Solving them, we get, x =1,y = 2.
Thus, (1, 2) is a stationary point or a critical point. It is a point at which there is a
possibility of a maximum or a minimum. To know that difinitely, the second order or

sufficient condition is to be checked.
2 822 2

H have. 22—t =650 2% ¢ =450
ere we have, =5 =, =6>0, 77 =f,=4>0, 7 =

=-1

[y ) (o%z oz ,
So we can write, ox? | | ay? > X0y [Q6x4>(-1)7]
So, there is a minimum of the function at the point (1, 2). The minimum value of z is,
Z=3X2+2y2—xy—4x-Ty+ 12
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=3(1)2+2.(2)°-1%x2-4x1-7x2+12
=3+8-2-4-14+12=23-20=3
Example 3.6. : Check for the maximum or minimum for the function :
Z=4x2—xy+y2—x3,
Solution : For maximum or minimum of z, our first order conditions are :

2 3x?2=0, and 652 0 2y=0
= —V - = - = —X + =
X 0, or, 8x -y — 3x , an , Or =X + 2y

or, X =2y.

Putting this value in the earlier condition, we get,
8(2y) -y -3(2y)*=0

or,16y—-y-12y-=0

or, 12y2—- 15y =0or, 3y(4y-5)=0

e oangys B
ny=0andy= 7

10 5
Now, X = 2y S~ x=0orx= 773 respectively.

5 5
Thus, we have, (x =0and y = 0) and (X :E’y :Z]'
Thus, we have two stationary or critical points.
0°z 0°z 0°z

Again, — =8-6x, — =2 and =-1.
ox? oy° OX.0y

2 2
At the point (0, 0), 2 _g+ ¢, 8_§:2>0 and
ox® oy

0°z 0°z 0°z
. >

ox? oy* | ox.oy

So, z is minimum at the point (0, 0).

The minimum value of z = 4x? — xy + y? — x3 = 0.

j [as, 8 x 2 > (-1)7]

55
Let us consider the situation at the point(z,zj .

2

0°z 5
We have, —=8-6x=8-6% - =8-15=-7<0,
OX 2
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ZZ 82

W: 2>0, and PYEY

0%z \( 0’z oz Y
SO, (axz ](ayz ] <(8X6yj [aS —7x2< (—1)2]

55
This implies that there is neither a maximum nor a minimum at the point (E’Z]’

=-1

I.e., it is a saddle point. At this point, the value of z is :

5 5 5 (5Y (5
Z=4X2—-Xy+ Y2 -x3= 4| 2| x4 | | =
vy (2] 22 (4) @

e 25 25 125 _400+25-50-250 _ 125
8 16 8 16 " 16

=7.8125

3.8 Constrained Optimisation

Constrained optimisation means the maximisation or minimisation of an objective
function where the choice variables are subject to some constraint. In this case, the
choice variables are not independent— there is some relation among them.

Examples of constrained optimisation are : utility maximisation subject to a budget
constraint, output maximisation subject to a cost constraint, cost minimisation subject
to an output constraint, etc.

There are two ways of solving a constrained optimisation problem :

(i) Method of substitution

(if) Method Lagrange multiplier
The method of substitution can be applied if the objective function which is to be
optimised, can be expressed as a function of only one variable by eliminating other
variables. Here, elimination is done by using the constraint. If this elimination cannot
be done, we have to optimise the objective function by applying Lagrange multiplier
method. We shall consider these two methods one by one.

3.8.1 Method of Substitution

The method of substitution is a technique of optimisation under constrained optimisation.
This technique is simple to apply and easy to understand. In this method, the objective
function is first reduced to a function of single variable by elimination method. After
that, the optimisation technique of single variable is applied. The elimination process
involves two steps. The first step is to express one of the variables in the constraint
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explicity in terms of the other variable. The second step is to substitute the value of this
variable in the objective function which is to be optimised (i.e., to be maximised or
minimised). Then the objective function becomes a function of one variable. It is then
simple to optimise this function, as it is done in the case of any single variable function.

We express our argument in mathematical notations. Suppose we want to maximise
the function Z = F(X, y) subject to the condition that y = f(x). Then, by substitution we
can write, Z = F[x, f(xX)] = h(x). Thus, z becomes a function of x only. Now, we have to
optimise (maximise or minimise) Z. If Z is to be maximised, we have to apply the first

- Z .. 0Z . o

order condition, - 0 and second order condition, 67< 0. If Z is to be minimised,

oz
we have to apply the first order or necessary condition, PV 0 and the second order

0°Z
dition, — > 0.
condition Ve

Let us give an example.
Example 3.7. : Optimise z = x2 + y2 subject to the condition that 2x -y -5=0

Solution : From the constraint or the condition 2x —y -5 =0, we have, y = 2x— 5. This
is the first step. Next we substitute this value of y in the objective function, z = x2 + y?
= X2+ (2x = 5)2 = X2 + 4x% — 20x + 25 or, z = 5x? — 20x + 25 = f(X)

.. dz
Now, to optimise z, the first order condition or necessary condition is : - 0,

0°z L i
or, 10x —20 =0 or, x = 2. The second derivative, 67 =10> 0. So, in this case, z is

minimum at x = 2. Then the minimum value of z = 5x% — 20x + 125
=5(2)2-20x2+25=20-40+25=5
Alternatively, z=x2 +y? = (2)2+ (-1)2=4+1=5
We consider another example.

Example 3.8 : Optimise z = 60y — 2x2 + 150 subject to the constraint : x—y =5

Solution : From the constraint, we get, x =y + 5.
We put this value of x in our objective function z.
So, z =60y —2(y +5)2 + 150
=60y — 2(y2 + 10y + 25) + 150 = 60y — 2y? — 20y — 50 + 150
. Z =40y - 2y? + 100. Thus, z is a function of y only.



296 NSOU e PGEC-1V

- : . .. . dz
Now, we optimise z. The first order condition or necessary condition is : d_y =0
or,40-4y=0 or, 4y =40 -~ y=10

2

Here the second derivative of z is : d—i dd __ 4<0

dy® dy dy
So, in this case, z is maximum at y = 10
Thenx=y+5=10+5=15
Now, we can easily find out the maximum value of z.
Maximum z = 40y — 2y? + 100 = 40 x 10 — 2(10)? + 100 = 400 + 100 — 200 = 300
Alternatively, we have, z = 60y — x2 + 150.
Putting x = 15 and y = 10, we get,
z=60x 10-2 x (15)? + 150 = 600 — 450 + 150 =150 + 150 = 300

3.8.2Lagrange Multiplier Method

In the case of constrained maximisation or minimisation of a function, we cannot apply
the simple technique of necessary and sufficient conditions. Here we have to maximise
or minimise a function (called objective function) subject to certain restriction(s) called
constraint(s). Hence the problem is called the problem of constrained maximisation or
the problem of constrained minimisation. In this case, an alternative technique is used.
Either we shall incorporate the constraint into the objective function, or we shall follow
a different technique called Lagrange technique. The former is called the substitution
method which we have discussed in the previous section. We shall now consider the
second method which is formally called Lagrange multiplier method.

The Langrange multiplier method is an optimisation technique where we have to
optimise (maximise or minimise) an objective function subject to a given constraint.
Here the variables of the constraint are so related that one cannot be explicitly expressed
in terms of other(s). Let us discuss the lagrange multiplier method in details.

Suppose we have to optimise a bivariate function y = f(x;, X,). This is our objective
function. We have to maintain a restriction which is called constraint. We assume that
the constraint involves two variables and it is given in an implict from : h(x;, x,) = k
where K is a constant. So, our problem stands as :

Optimise y = f(x,, X,) subject to h(x;, x,) = k. To solve this problem by Lagrange
method, we first construct an auxiliary objective function. This auxiliary objective
function is obtained by adding the original objective function with a Lagrange
multiplier(A) multiplied with the constraint in the form of zero. Thus, the auxiliary
Lagrange function, say, V is given by the following expression,

V =1(x,, x,) + A[k = h(x}, X,)]
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Here the objective function V becomes a function of three variables, namely, x;, X,
and A. Now the problem of constrained optimisation has become a problem of
unconstrained optimisation. So, to maximise V, the first order or necessary conditions
require,

ﬂ:o, or,f,—Ah, =0
0X,

ﬂ:o, or, f,—Ah,=0
oX,

%:o, or, k= h(x,, X,) = 0

We should note that the third equation is actually the given constraint. It implies that
in our optimisation process, we are obeying the restriction put by the constraint. Now,

f
from the first two equations, we get, ;_1: A and h—2 =\
1 2

So, f—lzf—zzx.
hl 2

The new objective function V is optimised at the point where this condition is satisfied.
Again, if the constraint is satisfied i.e., h(x, x,) =k or, k—h(x,, X,) =0, then optimisation

of V implies optimisation of y. Thus, where the condition ;—1= ;—2 =\ Iis satisfied, the
1 2
objective function y = f(x,, X,) is automatically optimised.
We give two illustrations below. We take same earlier two problems solved by the
substitution method. Now we shall solve those optimisation problems by following

Lagrange multiplier method. We shall see that both methods give the same result.

Examples 3.9 : Following Lagrange multiplier method, optimise z = x? + y? subject to
the condition that 2x -y -5=0

[This is our earlier problem No. 3.7.]
Solution : To solve this problem by Lagrange method we construct the Lagrange
expression, say, V. Our problem is to optimise z = x2 + y2 subject to 2x —y -5 = 0. So,
the Lagrangian function (V) is :

V = x2 +y2 + A(2x — y — 5) where X is the Lagrange multiplier. Here V = V(x, y, A).
So, to optimise V, first order conditions require,
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oV B B
v orV, =0 or,2x+2A=0 ..(a)
oV

Eorvyzo or,2y-A=0 ...(b)

N V,=0 2x-2y-5=0
o orvV, = or,2x—-2y-5= ..(C)

We have three equations and three unknows, namely, X, y and A.
So, we can solve for them. From (a) we get, A =—x and from (b) we get, A = 2y.
Comparing them, we get, —x = 2y or, X = -2y
Putting this value of x in (c) we get, 2(-2y) —-y—-5=0o0r,-5y=50r,y=-1
SLX==2(-1)=2and A =2y =2(-1)=-2
So the optimum value of z=x2 +y?2 = (2)2 + (-1)2 =4+ 1 =5,
In example 3.7, we obtained the same optimum value of z. We, however, here assume
that second order conditions are fulfilled.

We now consider the example given in 3.8.

Example 3.10 : Applying Lagrange technique optimise z = 60y — 2x? + 150 subject to
the constraint : x—y =5

Solution : Here our problem is to optimise z = 60y — 2x2 + 150 subject to x —y =5 or
Xx—-Yy-5=0. So it is a problem of constrained optimisation. We form the Lagrange

expression.
v =60y — 2x2 + 150 + A(X—y—5)
First order conditions or necessary conditions require,

@:0 or,—4x+ A =0 ..(a)
OX

N _gor,60-1=0 .. (b)
oy

ﬂ=0 r 5

o or,X—y-— .. (c)

Solving these 3 equations, we shall get the values of 3 variables, namely, x, y and A.
From (a) we get, A = 4x and from (b) we get A = 60

s 4x =60 or, x =15.

Putting this value in (c), we get, 15-y-5=0o0r,y=10

So, the optimum value of z = 60y — 2x2 + 150
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=60 x 10 — 2(15)? + 150 = 600 + 150 — 450 = 300

We got the same optimum value in example 3.8. We assume that the second order
conditions of optimisation have been fulfilled.

It may be noted that in the last two examples adopting Lagrange technique we have
obtained the extrema of the given function. We could not say whether these values are
maxima or minima. This is because, in the above two examples we have applied first
order or necessary conditions for optimisation. They are not sufficient for maximisation
or minimisation. The sufficient condition can be obtained from the second order
conditions.

3.9 Sufficient Condition for Constrained Optimisation

Consider a bivariate function : y = f(x,, x,). If there is no constraint or restriction i.e., if
the optimisation problem is unconstrained, we have a simple problem of optimisation.
In that case, our second order or sufficient condition for optimisation is = d?y < 0 for a
maximum and d2y > 0 for a minimum.

Consider now the case of a constrained optimisation. Suppose we want to optimise
a function y = f(x,, x,) subject to the restriction or constraint : h(x,, X,) = k where k is a
constant. In this case of constrained optimisation, the case is not so simple. In the case
of an unconstrained optimisation, the constraint is absent. Hence we can consider changes
is X, and X, (i.e., dx, and dx,) as arbritrary changes. But in the case of constrained
optimisation, both dx, and dx, can be taken as arbitrary changes. Here, either we have
to assume that x, depends on x,, or the other way round i.e., X, depends on x,. Thus, if
we consider dx, as an arbitrary change, dx, must be assumed to be dependent on dx;.
Similarly, if we take dx, as an arbitrary change, dx, must be assumed to be dependent
on dx,.

Under constrained optimisation, our constraint is given as : h(x, x,) = k where K is
a constant. Then by total derivative and putting dk = 0, we get, h,dx, + h,dx, = 0. Inthis
case, the sufficiency condition for having a maximum or minimum will be changed. An
extremum will be a point of maximum if d2y < 0 subject to the restriction dh = 0 and it
will be a point of minimum if d2y > 0 subject to the restriction that dg = 0. The ultimate
expressions of these conditions for maximisation and minimisation can be conveniently
represented in terms of determinant, or more specifically, in terms of a Hessian Bordered
determinant. We have considered these concepts in unit 5.

3.10 Applications of Maxima and Minima in Economics

The concepts of Maxima and Minima have so many applications in Economics. We
mention below some major such applications.
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3.10.1 Rleation between Aver age Product (AP) and Marginal Product (MP)
of an Input

Let the total product function be g = f(L) where g = total output and L = labour. So,
q ( )

average product of labour = AP, = - . Marginal product of labour (MP, ) is, in
d
terms of calculus, the first derivative of the total product functioni.e., MP_ = E =f'(L).

There is a standard relation between AP, and MP, . Let us try to derive that relation
between.

f(L
We know, AP, = ﬂ RIONFEY
dq _q
dAP dL
N | fAP = L
ow, S ope 0 L curve aL L2

Thus, slope of AP, curve Z 0 according as j—ﬂL Zq

or, according as MP, gAPL.

Thus, slope of AP, curve >0 i.e., AP, rises when MP, > AP, .

Again, slope of AP _curve = 0 i.e., AP, is constant or maximum when MP_=AP, .
Similarly, slope of AP curve <0 i.e. AP, falls when MP_ < AP, .

This is the standard relation between AP and MP.

The relation can also be established in an alternative manner. We may write, TP =
AP _xL,ie., q=AP_xL.Now, both qand AP, are functions of L, so, differentiating
both sides with respect to L, we get,

99 _ap 14+ L %A%
dL

n or, MP_=AP, +L x (slope of AP _curve)

) dAP,
Now, when AP, rises, slope of AP, curve or

L >0.So, MP, > AP, .

dAP,
When AP, falls, slope of AP, curve or

L < 0. So, MP, < AP, . When AP, is

_ dAP
maximum or constant slope of AP, curve or dLL =0. Then MP_ = AP, .
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3.10.2 Relation between Aver age Cost (AC) and Marginal Cost (M C) of output
Let the total cost function of the firm be C = f(q) where C = total cost and g = output.

Now, average cost. (AC) is the cost per untit of output, i.e., AC = ¢ :m: g(qg). On
qa q

the other hand, marginal cost is the first order derivative of the total cost function, i.e.,

_dac
MC = 4, = C'(@)

Now there is a standard relation between AC and MC. Let us try to derive this relation.
We may write, total cost, C = q x AC.
Both C and AC are functions of g(output). So, we can differentiate both sides with

respect to g. Then we get, :—;: =ACx1+ q.%o‘—qc i.e., MC=AC +q x (slope of AC curve).

Now, when AC rises, d?—c >0, or slope of AC curve > 0. Then MC > AC.
q

When AC falls, ?—qc 0, or, slope of AC curve < 0.
Then MC < AC.

S : dAC _
When AC is minimum or remains constant, 9 =0 or, slope of AC curve =0.

q
Then MC = AC.
We may prove this relation between AC and MC in an alternative manner. We may
write, AC = total—cost ie., AC = E:%.

output q q

Now, differentiating both sides with respect to g, we get,
dC dC
dAC i a.q—C><1 i a.q—C
dq - qz - qz

A .
So, dd—qC or slope of AC curve 20 according as Z—E.q zC

or, according as, ac z ¢ or, according as, MCZAC.
q

dq
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Thus, d;lA_C or slope of AC curve > 0 i.e., AC rises when MCz AC.
q

Similarly, d;A_C or slope of AC curve <0 i.e., AC falls when MC < AC.
q

Again, d;lA_C or slope of AC curve =0, i.e., AC is stationary or AC is minimum or
q

constant when MC = AC.
3.10.3 Profit Maximisation by a Firm

We first consider the conditions for profit-maximising employment of a firm. We assume
that total output(q) is a function of labour-employment(L) only, i.e., q = f(L). Let the
money wage rate per unit of labour be ® and price per unit or output be p. Now, total
profit, I'T = total revenue(R)- total cost (C). or, IT = R — C. Here, total revenue, R =p.q
and total cost, C=TVC + TFC = .L + F where F = TFC.

So,[I=R-C=pg-oL-F=p.f(L)-oL-F

Here, p, o and F are constants. So the whole expression on the RHS is a function of
L only. Thus, we get, IT = T1(L) i.e., total profit is a function of labour only. Now to
maximise IT, the first order condition or the necessary condition is :

2
1_I<0
dL?

dr1 .
Q) - 0. The second order condition or the sufficient condition is :

di1 _ dq dg
Now, —=p.—-®.1-0 =P.——O®
a PaL ° dL

. dIT dg
Putting OI—L_o,we have, p'dL o =0

d
or, p.—=m or,pxMP, = w
PaL P L

or, value of the marginal product (VMP) = money wage rate ().

It can be rewritten as, :—ﬁ:% i.e., marginal physical product of labour should be

equal to real wage rate.
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The second order condition or the sufficient condition for profit maximisation requires,

2
dl_I<0.
dL?
Cd2 T d?

As p > 0, the second order condition for profit-maximising employment requires,

1(d_q]<0 or, 40P

<0or, slope of MP__curve < 0 i.e., MP, should

be diminishing.

Thus, for profit maximisation, employment should be made at the point where the
following two conditions are fulfilled :

(i) First-order condition or necessary condition : MP, = real wage rate or, value
of marginal product of labour = money wage rate.

(if) Second-order condition or sufficient condition : MP_should be diminishing
or the MP, curve should be downward sloping.

Example 3.11: The short run production functionis : g =-0.1L3 + 6L.2 + 12L. If wage
rate is ~ 360 and Py = ~ 30, how much labour(L) will be employed and how much output
(g) will be produced in order to maximise profit?

Solution : Profit will be maximum when (i) MP = © and (i) slope of MP, curve <0.
p

Now, we have, g =-0.11% + 6.2+ 12L

360

d
. MP_ = b 0.3L2 + 12L + 12. Further,9: =12.

= i
dL o 30
So, putting MP = @ we get,—0.3L2 + 12L + 12 =12
P

or,—0.3L2+12L=00r,0.3L2+12L=0o0r, L(0.3L-12)=0

_ 12 10

. EitherL=0, 0r,0.3L-12=0o0r, L= ﬁ=12><? =40

Thus, from the first order or necessary condition, we get L = 0, 40.

Let us consider the second order or the sufficient condition. It requires that the slope

of the MP, curve should be negative.
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. _d(da)_diq_
Now, slope of MP, curve = dL L dL sz——O.6L+12.

d2
If L =0, slope of MP,_ curve = dT?:_O'6XO+12:12>O'

2
If L =40, slope of MP_curve = :ch: -06%x40+12=-24+12=-12<0.

So, profit will be maximimum if L = 40

Then the amount of profit-maximising output is :

q=-0.1L3+6L2+12L =-0.1 x (40)3 + 6 x (40)? + 12 x (40)

=-6400 + 9600 + 480 = 3200 + 480 = 3680

Let us suppose that instead of one input, the firm has two variable inputs, namely,
capital (K) and labour (L). The output(q) is being sold in a perfectly competitive market
so that price of output (p) is fixed. We also assume that price of K(p,) and price of
labour (p, ) are also fixed. So total profit of the firm is given by the expression,

[M=R-C=pxq-pK-p L. Hereq="f(K, L)

So, IT = pf(K, L) - p,K-p, L. Thus, IT depends on Kand L i.e., IT = TI(K, L). This
is a bivariate function without any constraint. We know the conditions of maximisation
of this function.

First order or necessary conditions to maximise IT are :
oIl

K =I1,=0,orpf -p,=0o0rpf, =p, ..(a)
or'l
L =11, =0,or,p.f —p, =0or, pf =p_ ...(b)

Condition (a) states that the value of the margianl product of capital should be equal
to the price of capital. Similarly, condition(b) states that the value of the marginal product
of labour should be equal to the price of labour.

oIl oIl
7 =T <0 57
oK oL

Second order conditions to maximise IT require, =f  <0and

oIl o°T1 . oMl
OK? o2~ ( oLoK
We consider an example.

2
] or, in alternative symbol, f,.,..f , > (f )%
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1 1
Example 3.12 : Let the production function of the firmis ¢ = 12 KL and p,, =4,

p, =1land pq:9.
Determine the profit-maximising input conbination and also the amount of profit.
Solution : Total profit, T=R-C = Pyd - (pK+p. L)

S I1=9 12—1—i -4K-L
K L

m=108- 2-2 _4k_L
K L

Here IT depends on Kand L i.e., IT =T1(K, L).
The first order conditions to maximise IT require,

ol 9
M =220 or ——4=0
Tk ke ~(3)
ol 9
M =220 or =-1=0
L= =000 1 .(b)

i C0 s ke d ks
rom(a)wege,K2 , or, =7 ~K=5

9
From (b) we get, FZl’ or,L2=9 .. L=3

The second order conditions to maximise IT require,

oIl 011
M, = S 0, 1T, =7 < oand IT,, .11, > (T, )2
Here, I, = _1_83:_18x3x3x3:_§ 0
K 3 3 3
18 -18 2
= ___ = =—=-<0
Ll 37 3x3x3 3
Further, IT,, orI1 =0
16 2 2
Now, IT, JI,, = ——x —— = ——>0
KK**“LL 3 3 9

e, I I1 > (HKL)Z_o_r, Mg Iy > (I, )? (as I, =11, by Young’s theorem).
So, second order conditions are fulfilled.
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N | W

~K=4,L=3

= 108—9x%—%—4xg—3 = 108-6-3-6-3= 10818 = 90 (Ans)

Let us consider the conditions for profit-maximising sales of a firm. Profit(IT) =
total revenue (R) - total cost(C) i.e., IT = R - C. Now, R = p x g where p = price of
output, g = quantity of output. We assume that p is fixed, i.e., firm is selling its output
in a perfectly competitive market. Further, total cost is a function of output(q) i.e.,
C=C(q). So, we have, [T=R-C =p.q-C(q) =I1(q) i.e., ITis a function of output (q).

To maximise IT, the first order condition or the necessary condition is : EZO,
dC dC
ie,pl-—=0or,p=—.
p dq p dgq

3—5 is the marginal cost (MC). So, the first order condition for profit maximisation is :
p=MC.

dR
Again, when p is fixed, we have, from R = p.q, E: P i.e., MR = p. So, the first

order condition for profit maximisation under perfect competition can also be written
as, MR = MC.
The second order condition or the sufficient condition to maximise IT requires,

s G d’C d’C
~<0ie,0- e <0 or, W>0
d°C d(dC d(MC)
Now, _dqz :E E = —dq = slope of MC curve.

So, the second order condition for profit maximisation under perfect competition
requires that slope of MC curve should be positive i.e., MC curve should be upward
rising.

Example 3.12 : A perfectly competitive firm is selling its product at price of = 5 per
unit. Its total cost curve is : C = g2 - 10qg2 + 17q + 60 where 60 = TFC or total fixed cost.
Determine the equilibrium output and the amount of maximum profit.
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Solution : We have C = g% — 10g2 + 17q + 60.

dc
~ MC= a =302 -20q + 17. Futher, p=5.

Now, the first order condtion for profit maximisation under perfect competition
requires, p = MC.

So, we can write, 3g2 —20q + 17 =5

or,3¢?-20g+12=0

or,39°-18q-2q+12=0

or,3q(q-6)-2(q-6)=0

or, (q-6)3q-2)=0

So,either(q—6)z00r(3q—2):0.So,q:60r%.

The second order condition under perfect competition requires that

MC > 0. Here, m(;/l—qcz6q—20

slope of MC curve > 0 or, d

Ifq= g,weget, dM—C: 6x3—20:4—20:—16<0
3 dqg 3

Ifq:6,weget,m(;/l—qC:BX6—20:36—20:+16>O

So, profit is maximum if g = 6.
Amount of maximumII=R-C=pxq-C
If g =6, total revenue, R=pxq=5x%x6=30
Total cost =C = g3 -10qg2 + 17q + 60
= (6)3 - 10(6)%2 + 17 x 6 + 60
=216 - 360 + 102 + 60
=378-360=18
So, the amount of profit=R-C =30-18=12
Alternative method
We may solve the problem in an alternative manner.
We have, p = 5. So, R = pg = 5q. Further, C = g3 - 10g2 + 17q + 60.
Now, total profit, [T=R - C =5q-q® + 109? — 17q — 60 = T1(q) i.e., total profit is a
function of output (q).

0.

To maximise IT the first order condition or necessary condition is : C;—H
q
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Here, an -302 +20q - 12
dq

Putting Z—H =0,-302+20q-12=0
q

or,3¢?-20g+12=0
or,39°-18q-2q+12=0
or,39(q-6)-2(q-6)=0

or, (q-6)3q-2)=0

So, either (q—6) =0, or, 3q—2 =0.

. 2
Then, either g=6or, q = 3

The second order condition or sufficient condition requires,

ZH 2
aq’ < 0. Here, dq2 =-6q+20
2 dIl 2
|fq:§, qu :—6q+202—6><§+20 =20-4=16>0
2
Ifq =6, i’ =-6q+20=-6x6+20=-36+16=-16<0

So, IT is maximum if g = 6
The amount of maximum profit =
IT =-q®+10¢%-12q - 60
= (-6)2 + 10(6)?— 12 x 6 — 60 = 216 + 360 — 72 — 60
=360-216-72-60=360-348 =12
Let us consider the conditions for profit maximising sales of a firm when price of
output is not fixed. That is, the firm is selling its output in an imperfectly competitive
market or the firm is a monopolist. Here, [T=R - C =p x q— C. Here p = f(q) is the
inverse demand function faced by the monopolist or by any imperfectly competitive
firm. So, R =p.q =1(q).q = R(q). We know that total cost(C) depends the level of output
i.e.,, C=C(q) . So, IT =R(q) — C(q) =T1(q) i.e., [T is a function of output(q).
To maximise IT, the first order or the necessary condition requires,

dr1
—0.or R_4C_4 drR_dC

. =0,0or — ,or — =%~
dq dg dq dg dg



NSOU e PGEC-1V 309

dC
Now, Z—R is MR while a: MC. So, the first order condition for profit maximisation
q

requires, MR = MC.
We can deduce this condition in a slightly different manner.
We have, IT=R - C =p(q).q — C(q).

_dIl dp dc
Now, putting aq - 0, we get, E.q +p—a =0
dp q) dC 1 dC 1 dc
4= , 1- =—, OrI, 1—|= —
or, p( aq p] dg ' P _pdg| dq ° p( |ed|] dq
q dp

1
Now, we know that MR :p(l—m]. So our first order condition becomes,
d

MR = MC.
. - _odim . d’R dC
The second order condition to maximise IT requires, —-<0, i.e.,, —5 ———= <0,
dq dg® dg
2 2
or, 3_(2: > Z Fj i.e. slope of MC curve > slope of MR curve.
q q

In other words, the MC curve should cut the MR curve from below.

Example 3.14 : The demand function faced by a monopolist or by any imperfectly
competitive firm is : p = 80 — 0.2q and the cost function is : C = 50 + 0.05 g2. Find
profit-maximising output, price and profit.

Solution : We have, p=80-0.29 .. R=pq=80q-0.2¢°

dR
So, MR = —— =80-0.4q

= dq
. dC

Again, C =50 + 0.05¢q? .. MC = a =0.1q.

Now the first order condition or necessary condition requires, MR = MC

or,80-0.4q=0.1qor,0.50=80 ..q= % =160
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dMC dMR

Here, slope of MC curve = W: 0.1 and slope of MR curve = W: - 0.4.
The second order condition for profit maximisation requires,

slope of MC curve > slope of MR curve.

As 0.1 > - 0.4, the second order condition is fulfilled.

-.q=160. Thenp=80-0.20=80-0.2 x 160 =80 — 32 =48

Total revenue, R = p x q =48 x 160 = 7680.

Total cost, C =50 + 0.05 g2 =50 + 0.05 x 160 x 160

=50 + 8 x 160 =50 + 1280 = 1330.

SoIT=R-C =7680 - 1330 = 6350. This is the amount of maximum profit.

Alternative method :

We may solve this problem also by following our alternative method.

We have, R = p.q = (80 — 0.2g)g = 80q — 0.2g2 and C = 50 + 0.05¢2.

Now, total profit, IT= R — C = 80q — 0.2g% — 50 — 0.05¢?

or, IT=80q — 0.25¢2 - 50.

Thus, IT depends on or is a function of output(q). So, the first order condition or the

necessary condition is, ?1_1;1[: 0

Here, ?1_1;1[: 80 - 0.5q. Putting ?1_1;1[: 0, we get, 80 -0.50=0

r, 0.5q =80 : —ﬂ—160
or, 0.5q = ..q—ols—

y . o T
The second order condition or the sufficient condition requires, dq2 <0.

2

Here, =-0.5<0. So, the second order condition is fulfilled. Hence, profit is

dg® =~

maximum if q = 160. Then price, p =80-0.20 =80 -0.2 x 160 =80 — 32 = 48
Then total profit, IT = 80q — 0.25¢2 — 50

=80 x 160 - 0.25 x 160 % 160 — 50

= 12800 - 6400 - 50

= 12800 — 6450 = 6350
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3.10.4 Utility Maximisation with Budget Constraint

Suppose we have a bivariate utility function U = f(q,, g,). We have to maximise
utility(U) subject to the constraint, M = p,q, + p,d,. So, it is a case of constrained
maximisation. We can do this by two alternative methods. One is the substitution method
and the other is the Lagrangean method. We shall first consider the method of substitution.

Substitution method

In this method, we express one of the variables in the constraint explicitly in terms of
the other variable. Then we substitute the value of this variable in the objective function
(i.e., our utility function) which is to be maximised in this case.

Now, one constraint is , p,q, + p,d, = M. It can be rewritten as, p,q, = M - p,q,

M — . . . - .
or,q,= MR . We incorporate this value of g, into the utility function. Then we
2
M — p1q1

] . Thus, U becomes a function of g, alone.
2

get, U=1(q,, q,) = f(qp

. - . - . du
The first order condition or the necessary condition to maximise U requires, P 0

0,
Now, 39 _ ¢ 41, (—&] .. (1)
d, P,
f,_p
P | _ — p 1M

So, f+f|—|=0 Jf=1.=% or

0 1 2( pzj or 1 2 p2 f2 p2
Now, f, = N MU, and f, = ﬂ:MUZ.

aq, aa,
So, LMY, _ Absolute slope of the indifference curve.
f, MU,

This can be shown in the following manner.
We have, U =1(q,, q,)

ouU
Taking total derivative, we get, dU = a .dg, + — .da,.
1
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Using different notation, dU = f,dq, + f, dg, where f, _Y. MU, and f, _ V-
aa, aq,
MU, Thus, we get, dU = MU dq, + MU, dg,.
Now, along a given indifference curve, utility is fixed i.e., dU = 0
. MU,.dg, + MU,dg, =0
or, MU, dq, =-MU,dq,
qu MUl fl

g, Mo, <O

dq
Thus, slope of the indifference curve (dqzj is negative. Its absolute slope is
1
dg, MU, f; MU
T =7 . Itis called marginal rate of substitution. Thus, MRS = L
dg, MU, f, g MU,

On the other hand, our budget constraint is :
plql + p2q2 =M or, p2q2 = _plql +M

or, q, = —&.q1 M
P, P,

. .. P
This shows that the slope of the budget line is [—p—lj . So, the absolute slope of the

2

budget line is P Thus, our first order condition for utility maximisation states that,
P,

MY, :&(or,f—lzﬁj i.e., MRS = Py
MU, p,{ T, P P
or, slope of indifference curve = slope of budget line.

2

The second order condition to maximise U requires, 2—8 <0.
Q;

We differentiate equation (1) with respect to g, and apply the condition

d*uU da, d
_ ) dg, p 99 [ p
e o = f, +f,. aa, + f21(_p_z]+ fy da, [—p—z] <0
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2
or, fy; = Ty (%] — Ty (%] 1y (%] <0
2 2 2

Multiplying both sides by p3, a positive number and putting f,, = f,,(by Young’s
theorem), we get,
fllpg - 2f12p1p2 +f22pf <0 (a)

Let us see the implication of this second order condition. We have, _ji ::_1
ql 2

d f
or, d_gz = —f—l . Here f, (= MU,) and f,(= MU,) both depend on g, and g,.
1 2

da, _ f(9,,9,)
So, 7= 2) . By further differentiation of it with respect to q,, we get the

’ dql f2 (ql’ q2
rate of change of slope of IC.

d’q 1 dg dg }
Now, 2= __|ff +f, —2f —f, f—-f —=f
dqf f22 |: 1172 12 dql 2 2171 22 dql 1

Putting :& = —I—l, we get,

.
‘jj?fz - —%{fﬂfz CEf, —ff 4, a

_ _%[fﬂf; — 2 ff, 4,7 ]
Again, we have, %:E_z or, f, = E_z 1,

d%q 1, . ) P 2 P;
dqu = —E {fnfz _2f12f2 _z"'fzzfz p_lg

Putting this value, we get,

1
= - 2 [fllp; _2f12p1pz +fzzpf]

2P

—h
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2
. . q .
Inequality (a) shows that the bracketed portion is negative. So, dq22 >0, i.e., the
1

indifference curves are convex from below. Hence inequality (a) implies convexity of
indifference curve. Thus, utility maximisation subject to a budget constraint requires
fulfilment of two conditions : (i) slope of indifference curve = slope of budget line.
(i) Indifference curve should be convex to the origin.

Example3.15: The utility functionis : U =q,q, and p, =2, p, =5, M = 100. Determine
the optimum values of g, and g, so that utility is maximum.

Solution : Here the budget constraint is : 2q, + 59, = 100. Expressing g, as a function
2
of g,, we get, 59, = 100 - 2q, or, g, = 20 - 5 d,

2

2
Substituting this into the utility function, U = q,q, = ql(ZO—équ = 20q, =

To maximise U, the first order or the necessary condition is, j—u =0,
q,

4 4 5
or, 20—gq1=0, or,gqlzzo q1:20x2=25

Then, from the budget constraint, ¢, = zo_éq1

q2=20—§x25:20—10210

The second order or the sufficient condition for maximisation of U requires,

2 2
d L2J<0.Here, d—LZJ:—£<0.
da; dg; 5

So the second order condition is fulfilled. Here, q, = 25, g, = 10. Then U = q,q, =
25 x 10 = 250.

L agrangean method

Suppose we want to maximise U = f(q,, q,) subject to a budget constraint
M=p,q, +p,q,. So, it is a problem of constrained maximisation. \We form the Lagrangean
expression,

Vv =1(q,, q,) + M(M - p,q, — p,d,) where A is the Lagrange multiplier.
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It should be noted that here maximisation of U implies maximisation of V as
MM -p,q, —p,q,) = 0. Further, here V=V(q,, q,, 1), i.e., V dependsonq,, g, and 1. To
maximise V, the first order conditions require,

ﬂzo,or,fl—kplzo or,f,=4p, ..(a
aq,
ﬂzo,or,fz—kpzzo or,f,=4p, ..(b)
o,

&:0’ or, M-p,q,-p,q,=0
OA

- L MU, _p . .
Dividing (a) by (b) we get, f, = D, or, MU, = ] i.e., slope of indifference curve =

slope of budget line. The second order condition or the sufficient condition requires
that the Hessian Bordered Determinant | H |should be positive. [For the concept of
Hessian Bordered Determinant, please see Unit 5, section 5].

- f11 f12 _pl
e, [H|=|f, f, -p,|>0
_pl _pz 0

Expanding the determinant, we get, —f_p> +f_,p,p, —p,(-f,,p, +f,,p,) >0

or, _fllp; + flzplpz + f21p1pz _fzzpf >0
or, f,p5 —2f,p,p, +f,p> <0 (asf, =f,,).

2

d
It implies that W; >0 This again implies that indifference curves are convex to
1

the origin.
Example 3.16 : Maximise U = q,q, where p, = 2, p, =5and M = 100.
Solution : We have solved this problem by the method of substitution. Now we shall

solve the same problem by Lagrangean method. Here our budget equation is : M = p,q,
+p,0, or, 100 = 2q, +5q,. So, we have to maximise U = g, g, subject to 100 = 2q, + 50,.

We form the Lagrange expression.
V =q,q, + (100 - 2q, - 5q,). Here, V =V(q,, d,, ») and maximisation of V implies
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maximisation of U as A(100 — 2q, - 5q,) = 0. First order conditions to maximise V
require,

ﬂ:o or,q,—2A=0o0rq,=2x\ ..(a)
aq,
ﬂ:o or,q,—5A=0o0rq, =51 ...(b)
oq,
NV _g,0r,100-2q, -5q,=0 or, 2q, +50q,=100 ..(c)
O\

2
Dividing (a) by (b), we get, 3—2 =z or, 2q, = 54,. Putting this in (c), we get,

1
2q, + 2q, = 100 or, 4q = 100
. g, =25,50,50,=2x%x25..0¢,=10
The second order condition or the sufficient condition requires that the Hessian

Bordered Determinant |H | > 0.

0 1 -2
Here, [H|=|1 0 -5| =(-1)(-10) -2(-5) =10+ 10=20>0.
2 -5 0

So, the second order condition is fulfilled.
- 0,=25,0,=10and U =25 x 10 = 250

3.10.5 Output Maximisation with Cost Constraint

Let the production function be q = f(x;, X,). If r, and r, are the prices of two inputs X,
and X, respectively then total cost, C = r x; + r,x,. We assume that C is fixed at C,,.
Then our problem is to maximise q = f(x,, x,) subject to the cost constraint C, = r,x, +
r,X,. We form the Lagrange expression, V = f(x,, X,) + A(C, —r X, —r,X,) where A is the
Lagrange multiplier. Here maximisation of V implies maximisation of q = f(x;, x,) as
MC,y—r,X, —1,%,) =0. Further, V is now a function of x,, X, and 2, i.e., V = V(x;, X,, A).
To maximise V, first order conditions are :

27\/:0 or,f,—Ar,=0or,f, =4r, ...(a)
1
ﬂ:o or, f,—Ar,=0or,f,=2r, ...(b)

oX,
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% =0,0r, Cy—rx, —rx,=0 o Cy=rx +rX, ..c)

ff MPx, 1, _
Dividing (a) by (b), we get, o — . l.e., slope of isoquant = slope of
2 2

r, °" MPx,
isocost line. This is our first order condition for output maximisation. The second order

condition requires that the Hessian Bordered Determinant |H | should be positive, i.e.,

. f11 f12 -
|H|:f21 f22 - >0-
- -r, 0

Expanding the determinant, we get, —f.r> +f_r.r, —r (-f,r, +f,,r)>0

or, f,r7 —2frr, +f,,r7 <0 (putting f,, =f,,).
The second order condition may be used to demonstrate that the rate of change of

2

slope of isoquant should be positive, i.e., d;(; > 0. This again implies that the isoquant
1

should be convex to the origin. Thus, for output maximisation subject to the cost
constraint the conditions are as follows :

(i) First order or necessary condition : slope of isoquant = slope of isocost line.

(i1) Second order or sufficient condition : isoquant should be convex to the origin.

11
Example 3.17 : Maximise g = x2x2 when P, =2, p, =4and ¢ = 400.
1 1
Solution : Here we have to maximise q = x2x2 subject to the cost constraint,
400 = 2x, +4X,. So, it is a problem of constrained maximisation. We follow the Lagrange
multiplier method. The Lagrange expression is given by :
11

V= x2x2 + M(400 - 2x, — 4x,) where X is the Lagrange multiplier. Here, V = V/(x,, x,, 1).
First order conditions to maximise V require,

1 Lt 1 Lt
V1=27V=0 or, X, 2xE =220, or, X, 2xZ = 21 (@)
1
1 1 1 1 1
szﬂ:o or, E.Xfxz2 4 0,or, E.Xfxz2 4 ...(b)
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v, =X _ ¢ or, 400 - 2x, - 4x, = 0, o, 2, + 4x, = 400 .(©)
O\
L1
=X, *X2
Dividing (a) by (b) we get, % _2 1
11t a 2
—X?X,

2

or, X2 :l or, X, = 2X,
X, 2

Putting this value in equation(c) which is our cost constraint, we get, 2x; + 4x, =400
or, 8x, =400, .. x, =50. Then x, = 2x, = 100.

11
Then output, q = xfxg = /100x50 = 50+/2 . The second order condition requires

that the Hessian Bordered Determinant, |H | should be positive. That is, |H| > 0.

. V11 V12 V13
Here | H | = V21 V22 V23 >0
V31 V32 V33

This condition implies that the iso-quant should be convex to the origin. We assume
that the second order condition is fulfilled.

3.10.6 Cost Minimisation with Output Constraint

We shall now try to find out the conditions for cost minimisation subject to a given
output. In fact, output maximisation subject a given cost and cost minimisation subject
to a given output are just the two sides of the same coin— one implies the other. Hence
in both cases, our conditions are same. Let us consider it. Let the production function
be q = f(x,, X,). Suppose our output is fixed at q,. So, q, = f(x,, x,). This is our output
constraint. The cost equation of the firm is, C = r,x, + r,x,. We have to minimise this
(objective function) subject to the condition that g, = f(x;, X,). So, it is a problem of
constrained minimisation. We follow the Lagrange technique and form the Lagrange
expression : Z = r X, + r,X, + p[q, — f(x;, x,)] where u = Lagrange multiplier. Here,
Z=Z(X}, Xy ).

First order conditions to minimise Z require,

0z

a—X1:0,or, r,—uf, =0,0r,r = pf; ...(a)
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0Z

a_><2:0’°r’ r,—uf,=0,orr,=npf, ..(0)
0Z _ -

a—u:O,or, d, — f(x,, X,) =0, or, f(x;, X,) =q, ..(c)

r

2
I

Now, dividing (a) by (b), we get, ]‘:_1:

2

. MPx . . .
e, —=>= Ut or, slope of isoquant = slope of iso-cost line.
MPx, T,

The second order condition to minimise Z requires that the Hessian Bordered

Determinant should be negative, i.e., |H|< 0.

o —uf, —pf, - r
So, [H|=|-pf,, -uf, -f,|<0. Putting, flzi and f,=-2 from first order

£ £ 0 " H
¢
—uf, —pf, -+
n
r
conditions (a & b), we get, |-uf,, —uf,, —j <0 . Multiplying the first two columns
Lo h
TR
¢
fll f12 -+
1 r 1 f11 f12 -
by —;,weget, 21 f, f, 2 0 or m f, f, -1|<0
; ; - -r, 0
1 2
—~ =z 0




320 NSOU e PGEC-1V

Since p > 0, the second order condition for cost minimisation is,

f12 -
f, f, -r|>0

- N

. It implies that the iso-quant should be convex to the origin.

Let us give an example. To show that cost minimisation with output constraint implies
output maximisation with cost constraint, we shall take the previous example. We shall
just transform the previous example of output maximisation into a case of cost
minimsation with output constraint.

Example 3.18 : The cost equation of the firm is : C = 2x; + 4x, and the production

11
function is : g = x2x2 . Minimise cost in order to produce 50+/2 units of output.

Solution : Here we have to minimise cost C = 2x, + 4x, (objective function) subject to

11
the condition, 50+/2 = x2x2 (output constraint). The constraint may be written in an

2 2
alternative form as,(50\/§) =(«/xlx2) or, 5000 = x,x,. This will simplify our

differentiation. Thus, our problem formally becomes, Minimise C = 2x, + 4x, subject

to the constraint, 5000 = x X,. Hence, the Lagrangean expression in this case is : Z =

2%, + 4x, + p(5000 - x,x,) where p is the Lagrange multiplier. Here Z = Z(x,, X,, p).
First order conditions to minimise Z requires.

oL

a—)(lzzlzo,or,z—uxzzo, or, ux, =2 ..(a)
E:Zzzo,or,4—ux1:0, or, ux, =4 ...(b)
oX,

o0Z
P Z, =0, o0r 5000 - x,x, =0, or, x,X, = 5000 ..(C)

w

- KX, :E X, 1 B
Dividing (a) by (b) we get, _MX1 1 or, X_2 =5 or, X; = 2X,.

1
Putting this value of x, in equation (c), we get, x,X, = 5000, or, 2x,.x, = 5000,
or, x5= 2500, or x, = 50.
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2 2 1
Then x, = 2x, =2 x 50 = 100. Then “:X_:%:Z_S'

2
Second order condition to minimise Z requires that the Hessian Bordered Determinant

should be negative, i.e., [H| <0.

. le ZlZ Zl3
Here, |H|= Zy Zy Zzs
ZSl Z32 Z33
0 -pn -X
Putting the values of the elements of |[H | , we get, [H|=|-p 0 -x,
X, =X, 0

Expanding, we get,| H | = p(=x,%,) = X,(ux,)

= —uX X, — uX, X, = =2uX, X,
= L . 50x100 = 200 <0
T 25 T '

Thus, the second order condition is fulfilled.

So, x, = 50, X, = 100, and the minimum cost to produce 50~/2 units of output is :
C = 2x + 4x, = 2(100) + 4(50) = 400

We should note that in the previous example, the maximum value of output was
50+/2 when C = 400.

3.10.7 Sign of Coefficients of a Cubic Cost Function

Let the cubic cost functionbe : C = a, +a,q + a,92 + a,0>. The question is what restrictions
should be imposed on the signs of a,, a,, a, and a, so that we can get normal AVC, AC
and MC curves. Here, ifq =0, C=a,. So, a, = TFC. Hence, a, > 0. Again, we know that
the shapes of MC, AVC and AC are determined by the nature of TVC. Here, TVC = a,q
+ a2q2 + a3q3

TVC

So, AVC = T =a, +a,q +a,0?
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To minimise AVC, the first order condition requires,

dTVvC 0 ) 0 a,
——=0,0r,a,+20,q=00r, q=——"*.
dqg 278 2a,
- I _ d°AVC
The second order condition to minimise AVC requires, V >0,
d’AVC
Here, dq’ =2a,
2
So, d :\2/0 >0, i.e., the second order condition will be fulfilled if a, > 0.
q
. e e e . . . a2
Again, the AVC-minimising output must be positive. i.e., " oa >0, As a;>0,a,<0.
3

Let us consider the minimum value of AVC. We know that AVC is minimum when

q= —;—2. So putting this value in the equation of AVC, we get minimum
aS

AVC = a, +a,q + a,0°

a’ . a’ a;  4aa,—a’

4a, 4a,

So, minimum AVC will be positive if 4a,a, — a3 > 0 or, if 4a,a, > a>. Asa, >0, a, >
0. Thus to get normal U-shaped AVC curve, the restrictions are
() a, >0, (i) a, >0, (i) a, <0, (iv) a; > 0 and (v) 4a,a, > a;. If AVC is u-shaped, then

MC and AC will also be u shaped.
We may get similar restrictions on the signs of coeffients taking normal u-shaped

MC curve. In that case only the restriction no. (v) will be : 3a,a; > a;. Readers are
requested to check it.
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3.11 Summary
1. CONCEPTSOF MAXIMA AND MINIMA OF A SINGLE VARIABLE FUNCTION

When a function attains its highest value it is called maximum value and when it attains
its lowest value, it is called minimum value. Separately each one is called extremum
and together they are called extrema (extrema is the plural word of extremum). Both
maxima and minima are of two types : global and local.

2. IDENTIFICATION OF MAXIMA AND MINIMA

If y = f(x), then its maximisation requires fulfilment of two conditions : (i) First order
.. dy N . . dy
or necessary condition : o f'(x) = 0. (ii) Second order or sufficient condition : o =
f"(x) < 0.

Similarly, for minimisation of the function, we require fulfilment of two conditions :

d
(i) First order or necessary condition : d—i =f'(x) =0

d’y
7: f"(X) >0

(if) Second-order or sufficient condition : g

3. POINT OF INFLEXION

Simply speaking, point of inflexion on a curve or function is the point where the curve
changes its curvature. If y = f(x), then it will have a point of inflexion if

d’y d’y
d7: f"(X) =0and d? f'”(X) = 0.
4. OPTIMISATION OF MULTIVARIATE FUNCTION

Optimisation is a process or an attempt to achieve an optimum (i.e., maximum or
minimum) situation. There may be basically two types of optimisation : unconstrained
optimisation and constrained optimisation.

5. UNCONSTRAINED OPTIMISATION

Unconstrained optimisation refers to the process of optimisation of a variable where
there is no constraint or condition. If a bivariate function y = f(x;, x,) is such that
explanatory variables x, and x, are independent, then we apply unconstrained
optimisation, i.e., unconstrained maximisation or unconstrained minimisation of y.
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6. CONSTRAINED OPTIMISATION

Constrained optimisation means the maximisation or minimisation of an objective
function where the choice variables are not independent : they are subject to some
constraint or somehow related to each other. There are two methods of solving a
constrained optimisation problem : (i) Method of substitution and (ii) Method of Lagrange
multiplier.

7. APPLICATION OF MAXIMA AND MINIMA IN ECONOMICS

The concepts of maxima and minima have numerous applications in Economics. In
particular, we may mention the cases of profit maximisation, cost minimisation, output
maximisation subject to a given cost, utility maximisation subject to a given budget,
etc. They are also used to determine the maximum points of average and marginal
product functions, minimum points of marginal cost, average variable cost and average
cost functions. In a word, the concepts of maxima and minima are used to determine
the optimum level of any decision variable.

3.12 Exercises

Short Answer Type Questions

What do you mean by maxima of a single variable function?

What is meant by minima of a single variable function?

What is an increasing function?

What is a decreasing function?

What do you mean by a stationary value of a function?

What are the conditions for maximisation of a single variable function?

State the conditions for minimisation of a single variable function.

Mention the necessary and sufficient conditions for maximisation of a function.
. What are the necessary and sufficient conditions for minimisation of a function?
10. What is meant by point of inflexion of a function?

11. What are the conditions of point of inflexion of a univariate function?
12.What is meant by optimisation of a function?

13. What is unconstrained optimisation?

14.What is meant by constrained optimisation?

15. What are the two methods of solving a constrained optimisation problem?

16. State the relation between AP and MP.

© oo N Ok wN PR



NSOU e PGEC-1V 325

17. State the relation between AC and MC.

18. Let U = f(q,, q,). Deduce the slope of an indifference curve.

19. What are the conditions of maximisation of a bivariate function?

20. What are the conditions of minimisation of a bivariate function?

21. When can we apply substitution method in the case of constrained optimisation?
22.When do we apply Lagrangean method in the case of constrained optimisation?

Medium Answer Type Questions

1. Discuss the concepts of maxima and minima of a single variable function.
What is global maximum and what is global minimum of a function?
Describe the concepts of local maximum and local minimum of a function.

M w

How will you identify the maximum and minimum points of a single variable
function?

Write a short note on the concept of point of inflexion of a single variable function.
What are the conditions of unconstrained optimisation of a bivariate function?
Discuss the method of substitution in the case of constrained optimisation.

Write a short note on sufficient condition for constrained optimisation of a bivariate
function.

9. State and mathematically prove the relation between AP and MP.
10. Mathematically prove the relation between AC and MC.

11. How will you determine profit maximising level of employment of labour of a single-
product firm?

© N o o

12. Discuss the conditions for determining profit-maximising sales of a firm under perfect
competition.

13. What are the conditions of determining profit maximising output of a firm in an
imperfectly competitive market?

14. The cost-function of the firmisC = g2-3q?2 + 9. Determine AC-minimising output.

Show that at this value of output, MC = AC.

15. Let C = x3 — 6x2 + 15x be the total cost function. Show that when AC is minimum,
AC = MC.
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16. The total cost of the firm is : C = a, + a,q — a,q% + a,q°. Determine the output when
MC is minimum. What is the amount of minimum MC?

17. Let the utility functionbe : U aq, bg, g./0,d0, . Determine MRS.
18. The utility function is : U = log[(q, + a)*(q, + b)’]. Determine MRS between ¢, and g,,.

19. Let the production function be : g =+KL . Show that MRTS between L and K is
ven b K
given by =

2

20.C = 100 + 2x + % Calculate minimum AC.
21. Find minimum AC when AC = 10 — 4x3 + 3x4.

1
22. Total cost, C = §x3 —5x%+75x+10 . Find minimum MC.

Long Answer Type Questions

1. Discuss the Lagrange multiplier method of constrained maximisation of a bivariate
function.

2. Briefly describe the Lagrangean technique of constrained minimisation of a bivariate
function.

3. Discuss the conditions of profit maximisation of a firm.

4. How will a firm maximise its output subject to a cost constraint? Mention both
necessary and sufficient conditions.

5. Discuss the conditions of utility maximisation subject to the budget constraint of a
consumer following substitution method.

6. Analyse how a consumer will maximise utility subject to the budget constraint.
Analyse the problem following Lagrangean multiplier method.

7. Deduce the conditions of cost minimisation of a firm subject to an output constraint.
Mention both first and second-order conditions.

8. The cost function of the firmis : C = a, + a,x — a,x* + a,x® where x = output, a,, a,,
a, and a, are positive constants. Determine the value of x at which AVC is minimum.
Prove that at this value of x, MC = AVC.

11

9. Minimise C = 2K + 8L subject to K22 =8.
10. Maximise U = x + 2y + xy + 1 subject to 4x + 6y = 130



NSOU e PGEC-1V 327

11. Taking the cost function, C = a, + a,q — a,q% + a,0°. Show that first MC reaches

minimum, then AVC and at last AC.

12.p=1200-2qand C = ¢ - 61.25¢2 + 1528.5q + 2000. Determine profit-maximising

p and g and also maximum profit.
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4.1. Objectives

After studying the unit, the readers will be able to know
¢ the concept of integration and its types
e rules of integration
e various applications of integration in Economics

4.2 Introduction

Integration is a very important tool in mathematical economics. This mathematical
concept or tool has so many uses in Economics. In a word, the technique of integration
helps us know any total function if its marginal function is given. Further, by applying
integration, we can determine the demand function if the value of price elasticity is
given, the supply function from the value of elasticity of supply, etc. We can also measure
the amounts of consumer’s surplus and producer’s surplus by using the technique of
integration. Hence we discuss about the concept of integration, its types, rules and
applications of integration, etc. in this Unit.

4.3 Concept of I ntegration

The concept of integration may be defined in two alternative ways. First, integraion is
a process of reverse differentiation. In the process of differentiation, we first take primary
function and by differentiation, we reach the derivative function. If we go in the opposite
or reverse direction, we go from derivative function to the primary or original function.
This reverse process is called integration, or more specifically, indefinite integration
and the result obtained through this process is called indefinite integral. In the second
or alternative sense, integration describes a process of summation. If we want to measure
an area enclosed by a curve or a set of curves, we may think of the area consisting of
infinite narrow stripes. Summing those stripes we may get the whole area. This process
of summation is also called integration, or more specifically, the definite integration
and the result obtained through this process of summation is called in definite integral.
The process of integration is denoted by the symbol |.

4.4 Indefinite Integral

Let us try to define indefinite integral formally. We have said that integration is the
reverse process of differentiation and is denoted by the symbol . If differentiation of a
given function g(x) gives the derivative f(x), we can integrate f(x) to find g(x). Thus, if
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d
g(x) is a function of x such that d—x[g(X)] = f(x), then the indefinite integral of f(x) with

respect to x is the function g(x). In notation, j f(x)dx = g(x) . The function f(x) is called
the integrand and the function g(x) is called an integral (or, anti-derivative) of the function

d
f(x). For example, since d_x(x)2 =2x, [2x dx=x".

4.5 Rulesof Integration

We now mention some major rules of integration.

Rule 1. Power rule: Ix“dx = Ll,x“” + C Where c is constant, (n = -1).
n+

Someillustrations:

5
4+1 X

: X
i) | x*dx = c= —+¢C

()J 4+1+ 5

B Xt X2

n | xdx= c=—+C

( )J. 1+1+ 2

0 X0+1 3

(i) fax= L= [0 = [ X yo=x+c

. x N d
Rule 2. Exponential rule: je dx =e* + ¢ since d—X(e ) =g

f'(x) . F0y — L of®)

' FO)y — f(x) = af(x) e'dx = e +c

(2a) J'f (x)e"™dx f,(x)e +Cc =elx +csmcef £(x)

Rule3.L ithmi I 'I—ldx=f—dx—l + > 0) si d I -1
ule 3. Logari icrule: ™ ” =log x + ¢, (x> 0) since OIX(ogx)—X

3(a). j %dxz log f(x) + ¢

Rule 4. Integral of a multiple: ka(x)dx = kjf(x)dxwhere k is a multiplicative
constant. (Note that a variable term cannot be factored out in this fashion).

5x3
[llustration : I5x2dx :5Ix2dx :?+c
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Rule5. Ruleof theintegral of asum : j[f(x) +g(x)]dx = If(x)dx +jg(x)dx . This
can be generalised for any number of sums.
Somelllustrations:

(i) J.(Xz+X)dx:J‘deX+J.XdX:X—3+c1+&+c2 - X_3+_2+C
3 2 3 2

where c(= ¢, + c,) is a constant.
(ii) ~[(x3+7x+5)dx:jx3dx+7j'xdx+5j'dx

x* x?
= —+C, +——+C, +5X+C,
4 2

X4 2

= I+T+5X+C WhereC:C1+C2+C3

du
Rule 6. Rule of substitution : The integral of f(u). ™ with respect to the variable x

du
is the integral of f(u) with respect to the variable u. In symbols or notations, j f(u) d—x-dX =

jf(u)du =g(x)+c.
2x* 2x? x*

[llustration : I2x(x2 +1)dx = I(2x3+2x)dx: T+T+C: 7+x2 +cC.

Let us integrate the same expression 2x(x? + 1) by the rule of substitution.

du
Let u=x2+ 1. Then — = 2X

dx
e
- oy S OX
du u? 1
2 — - _ _4 _ o try2 2

Now, ~|‘2X(X +1)dx = IZX.U.ZX _J.udu_ 5 +C,= 2(x +1)° +c,
= —4+x2+£+c = X—4+x2+c where ¢ = e

2 2 T2 PR

We may integrate in an alternative manner. We have j 2x(x* +1)dx
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du ) dU
= —(x* 1dx ing x2+1= ——=2X

dx( ) dX [Putting X2 + 1 = u and X ]
= IU du= v +C, = X—4+x2+1+c _ X +x*+C where ¢ = Tec
= = 2 1= 2 2 = 2 = 2 1

Rule7: Ruleof integration by parts: The integral of v with respect to u is equal to
uv less the integral of u with respect to v.

In notation, Ivdu = uv—ju dv
Let us check it. We know, d(uv) = v du + u dv.

Id(uv):fvdu+fudv uv:fvdu+fudv.So, Ivdu:uv—fudv

4.6. Definite Integral

The concept of definite integral may be interpreted either as an area or as the limit of a
sum. The area enclosed by the curve y = f(x) and the x-axis over a specified domain of
x is called the definite integral for the function over this domain. Suppose y = f(X) is a

b
function such that If(x)dx=g(x). The definite integral '[f(x)dx is defined by

[F09dx=[90:)1 = g(b) - g(a)

a

where a and b are two real numbers, and are called the lower and upper limits of the
integral, respectively. We give some simple illustrations.

b
Illustrations: (i) Evaluate Il.dx
Ans, Il.dx =jx°.dx =X

b
So, [1du=[x]; =b-a
5
(i)  Evaluate j 4x3dx
1

r axt T
Ans. [3x’dx = {T} =[x']P =5%-14=625-1=624
1 1
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b
(iif) Evaluate [ ke*dx

b
Ans, fkexdx = [ke* ], = keb — ke? = k(eb — e?)

4.7 Properties of Definite Integral

Before mentioning the properties of definite integral, we should mention that all functions
are not integrable. There are some theorems which specify the conditions under which
a function f(x) is integrable. In this connection we may mention the fundamental theorem
of calculus. This theorem states that a function y = f(x) is integrable in the interval [a, b]
if it is continuous in that interval. The function is then called Reimann integrable.

Having stated the fundamental theorem of calculus, let us mention some important
properties of definite integral.

b a
Property 1: [F(x)dx=—[f(x)dx
a b

b a
For, [f(x)dx=g(b) - 9(a) = -[g(a) - g(b)] = —[ F(x)dx
a b
Property 2 : Adefinite integral has a value equal to zero when the two limits of the
integration are identical, i.e., [ f(x)dx=g(a) - g(a) = 0

This property can be explained in a very simple manner. Under the *area’ interpretation
of definite integral, this means that the area (under a curve)above a single point in the
domain is nil. This is quite obvious. On the top of a point on the x-axis, we can draw
only a(one dimensional) line, never a (two dimensional) area. The area of a line does
not exist.

d b c d
Property 3: f(x)dx f(x)dx f(x)dx f(x)dx. This result is also quite
a a b c
obvious. Area under a curve in the interval [a, d] = Area under the curve in the interval
[a, b] + area under the interval (b, ¢) + area under the interval [c, d]. This property is
known as the property of additivity. This property can be extended to n sub-intervals.
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b b
Property 4: I—f(x)dx = —If(x)dx

b b
Property 5: '[kf(x)dx = kjf(x)dx

Property 6: [[f()+h(x)]dx = [ f(x)dx + [ h(x)dx

Property 7 : Integration by parts. Suppose there are two functions of x, say, u = u(x)
and v = v(x).

Then, XJ.b vdv = [uv] - XJ‘b u.dv

X=a

4.8 Definiteintegral asan Area under a Curve

We know that the concept of definite integral can be interpreted as an area. The area
enclosed by the curve y = f(x) and the x-axis within an

y =1(x) y = f(x)interval of x is called the definite integral for this function
over this interval. The idea may be clarified with the help

of a diagram. In our figure 4.1 beside we have drawn a
continuous function y = f(x). We have also taken two values

>x Of X, say, a and b. These are the two limits of x. Here b is
0 a b the upper limit of x while a is the lower limit of x. Now,
(Fig. 4.1) definite integral of the function y = f(x) within the interval

b
[a, b] of x = '[f(x)dx =g(b) — g(a) = Area under the curve y = f(X) up to x = b minus area

a
under the curve up to x = a. Thus the definite integral may be regarded as an area under
a curve. We consider a simple example below.

. ) y=X
Example 4.1 : Find the area enclosed by the line y = x, the x- 3{ 4
axis and the ordinate at x = 5.
Solution : Here, y = f(x) = x. We have to find out the area of 5
the shaded region shown in figure 4.2. Here the interval of x
is [0, 5]. So, we have to calculate definite integral of y = —f=2 e —>X

f(x) = x within the interval of [0, 5] of x. Hence, formally, (Fig. 4.2)
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5
the required area is represented by J' f(x)dx. Putting f(x) = x, we have the area =
0

5 2P

25
jxdx: X |- 5X5_o =—=125.
> 2], 2 2

In this example we have taken y as a linear function of x. Let us take a non-linear

function, say, y = %xz. Consider the following example.

Example 4.2 : Find the area enclosed by the curve %xz, the y= %XZ

> <

x-axis and the ordinate at x = 3.
Ans. Here the required area has been shown by the
shaded region in figure 4.3. It is given by :

3 3 3
JAlxde: X :3><3><3_0:g | X
02 2x3 0 2x3 2

(Fig. 4.3)

4.9. Application of Integration in Economics

There are many uses of integration in Economics. We know that integration is the reverse
process of differentiation. By differentiating a total function, we can get the marginal
function. Hence, by integrating any marginal function we can get the corresponding
total function. Thus, we may get the total product (TP) function from the marginal
product (MP) function, total revenue (TR) function from the marginal revenue (MR)
function, total cost (TC) function from the marginal cost (MC) function, etc. just by
applying the technique of integration. We may also derive the demand function from
the elasticity of demand, measure the amout of consumer’s surphus, volume of producers
surplus, etc. by means of integration.We shall consider some of these cases one by one
in this section. We first try to find out total functions from the given marginal functions.

4.9.1 Finding out Total Functions from Marginal Functions
Case (i) : Total product (TP) function from marginal product (MP) function.

Let the total product (TP) function be : y = f(L) where y = total product and L = labour.
Now, we know that the marginal product of labour is the change in total product due to
. : . . dTP
one unit change in labour employment, ceteris paribus. In terms of calculus, —— = MP

dL
So, dTP =MP x dL
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Integrating both sides, we get, [dTP = [MP.dL or, TP= MP.dL
Thus, integrating the MP function, we may get the TP function. Let us give an example.

dy Y
Example4.3: The production function Y = f(L) is such that aL 3. T Determine the

production function.

Y Y dy dL
Solution : We have, d—zs.r .

dL Y L

. ) dY dL
Integrating both sides, we get, | —=3|—
grating get, [-=3[—

or, log Y =3 log L + log a where log a is the constant of integration.
or, log Y =log L3 + log a
or, log Y = log (aL?)
or,Y=al3
This is the desired production function in this case.
Case (i) Total cost (TC) function from marginal cost (MC) function.

Let the total cost function be, C = f(q) where C = total cost and q = output. Then

dC
MC = a So, dC = MC.dq. Integrating we get, ij =IMqu or,C= IMC'dq-

Thus, by applying the technigque of integration, we can get the total cost(C) function
from the marginal cost (MC) function. Consider the following example.

Example4.4: MC =500-8q + 2. If TFC = 6000, determine the total cost (C) function.

Solution : We have, MC =500 - 8q + g2 or, Z—C =500-8q+0>
q

- dC = (500 - 8q + g?)dq
Integrating, IdC :j(500—8q +0°)dq = SOOI dg —8jqdq +Iq2dq
2

3
=500q - 8><q7+%+ K where k is the constant of integration.

3
So, C = 500q — 4q? + %+k.

Now, we are given that TFC = 6000 i.e., if ¢ = 0, C = 6000. Putting g = 0 in our total
cost (C) function, we get, k = TFC = 6000. Hence the desired total cost function is :



NSOU e PGEC-1V 337

3
C = 500q — 42 + %+6000.

Here 6000 represents the positive vertical intercept of the short run total cost function.
Case (iii) : Total revenue (TR) function from marginal revenue (MR) function.
Let the total revenue (R) function be : R = f(q) where q is the amount of sales of
dR

output. So, MR = E or,dR = MR x dqg.

Integrating we get, [dR = [MR.dg or, R = [MR.dg

Thus, by integrating the marginal revenue function, we get the total revenue function.
Let us give an example.

Example 4.5 : If MR = 30 — 4q — g2, find the TR function.
Solution : We know that total revenue (R) is a function of g, i.e., R = R(q)

drR
Now, MR T dR = MR dq

Integrating, IdR:IMqu = I(30—4q—q2)dq = 3Oqu—4quq—Iq2dq

2 3
or, R=30q -4 x q?_q?+ k where k is a constant.

3

So, R:3Oq—2q2—%+k
Now, we know thatifq=0,R=0.. k=0

3
Hence the total revenue function in this case is : R = 30q — 202 - %

Here R = 0 if g = 0. This total revenue function(R) will start from the origin.
Case (iv) : Consumption function from the marginal propensity to consume (MPC).
We assume that consumption(C) is a function of income (Y) i.e., C = f(Y). Then the

dC
marginal propensity to consume (MPC) is defined as I Thus, MPC is the first-order

derivative of the consumption function with respect to income, or, MPC is the slope of
the consumption function.
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Thus, mpc = 9C - dc = MPC x dY
dy
Hence, j dC = j MPC.dY or, C= j MPC.dY

Thus, integrating the MPC function, we can get the consumption function.
Let us give an example
Example 4.6 : Deduce the consumption function if the marginal propensity to consume

4
(MPC) is 5 and autonomous cousumption is 1000.

Solution : We are given that MPC =  or, = =+ . dc=2dy
ution : We are given tha =z 0y 5 dC=2
Integrating both sides, we get, ij :jﬂdy =£IdY. . C= iY+ k

5 5 5

where K is the constant of integration.
Now, it is given that autonomous consumption is 1000, i.e., C = 1000 if Y = 0.
Again, from our consumption function, we get, C =k if Y = 0. So, k = 1000. Putting this

: : : 4
value of k, we get the desired consumption function : C = EY +1000., Here 1000

represents the positive vertical intercept (i.e., autonomous consumption) of the
consumption function.

Case (V) : Saving function from the marginal propensity to save (MPS) function.
We assume that the amount of saving(S) depends on the level of income (Y), i.e.,

. . das . .
S = S(Y). Then marginal propersity to save is defined as : MPS = v i.e., MPS is the

first order derivative of the saving function.

ds
Now, MPS = v or, dS = MPS.dY

Integrating we get, [dS = [MPSdY or, S=[MPsdY

Thus, integrating the MPS function with respect to Y (income), we shall get the
saving function.
Consider the following example.
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1

Example4.7: MPS=0.2-0.3Y 2 and whenY =100, S = 0. Find the saving function.

Solution : We know that if S = S(Y), then MPS = 3_\5(

.. dS =MPS.dY
Integrating, IdS :IMPS.dY

or,S= J(0.2—0.3Y_;)dY = O.ZJdY—O.BIy_;.dY

1

Y? i . .
=0.2Y - 0'3T + a where a is the constant of integration.

2

1
Thus,S=0.2Y -0.6Y2 +a.
Now, we are given that S = 0 if Y = 100.
So putting Y = 100, we get, 0.2x100—0.64/100 +a =0
or,20-6+a=0..a=-14
1

So, our desired saving function is : S = 0.2Y —0.6Y2 —14
Here a = —14 is the negative vertical intercept of the saving function.

4.9.2 Demand Function from the Elasticity of Demand
Let the demand function be : q = f(p) where q = quantity demanded and p = price. From

d
the law of demand we know that £ or f'(p) <0i.e., there is an inverse relation between

p and g, ceteris paribus. Now, price elasticity of demand may be defined as the
proportional change in quantity demanded divided by the proportionate change in price,

do
ceteris paribus. Thus, price elasticity of demand, e, = o?_p = %j—g :
P

d
If the law of demand holds £ <0 and so, ey <0. The absolute value of price elasticity
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dq
of demand, |e, |- ~a
1 d d£
p
Now, if e, IS given, we can get a relation between dq and dp . Then, by applying the
q p

technique of integration, we may get a relation between g(quantity demanded) and p
(price). This relation gives us the demand function.

dp

dlogq asdlogqg= dq and d log p = — . It is the alternative
p p

Alternatively, |e, | = -
dlo

formula of elasticity of demand (e,) in terms of logarithms. Now, if |e | or e, is given,
we can get a relation between d log g and d log p. Then by applying the technique of
integration, we may get the relation between q and p. That relation gives us the desired
demand function.

We consider two examples showing these two techniques.

Example 4.8 : If e | = 1, deduce the demand function.

dg

d d
Solution : [, =1 or _dipzl or, ?q: _?p.
p
Integrating, we have, j%q = —j%p

or, log g =-log p + log c where log c is the constant of integration.

Now, log g = log (%]

or,q= € is our demand function or, alternatively, we may write,
p
log q + log p = log c or, log(pq) = log c
.. pq = ¢ = constant. This is our demand function. In this case, expenditure of the
buyer (pq) is constant and we get a constant outlay curve. Here,the demand curve is a
rectangular hyperbola.
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Alternative method : We can deduce the same demand function by following a slightly
different use of the technique of integration. e are given that |e,| = 1. Using the

dlogq
dlogp
Now, integrating, Id logq = —jd logp

or, log g =—log p + log ¢ where log c is a constant.

=1 or,dlogg=-dlogp

log-definition of e, we can write, —

or, log(pg) =logc ..pg=cor,q= € is our desired demand function,
p

We consider another example where the value of price elasticity of demand is a
constant not necessarily equal to unity.

Example 4.9 : If the absolute value of price elasticity of demand is a, a constant,
deduce the demand function.

dq
Solution : We have, |ey| = o or, S or, d_q:_ad_p.
dp q p
p

dp
P

or, log g = - alog p + log a where log a is a constant
. log g =log(ap=®) - q=ap- < This is our desired demand function.

dlogq:Oc
dlogp

Integrating, J'%q = —aI

Alternatively, e | = a or, —

or,dlogqg=-adlogp.

Integrating log g = — o log p + log a where log a = constant.

or, log q=log (ap=®)

. =ap~“is the demand function.

Similarly, we can deduce the income-demand function or the Engel function by
applying the technique of integration if the value of income elasticity of demand is
given. Let the income-demand function or the Engel function be : g = f(M) where q =
quantity demanded and M = money income of the buyer. Then the income elasticity of
demand is the percentage change in quantity demanded due to one per cent change in
money income, ceteris paribus. In symbols,
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d—qxloo da
c.a " _a Md
M =—,
dﬂxloo ~dM - qdm
M M

Now, if e,, is given then we get a relation between dq and dVM Then applying the
q

technique of integration, we shall get a relation between g and M. That relation is nothing
but the income-demand function or Engel function.

_ dlogq
“dlogM

Again, if e, is known, we shall have a relation between d log g and d log M. Now,
using the technique of integration, we shall get a relation between log g and log M, i.e.,

between q and M. That relation is our Engel function or the income-demand function.
We consider an example below.

Alternatively, using the log-definition, we have, €wm

Example 4.10 : If income elasticity of demand, e, = 1 at all points on the income-
demand curve or Engel function, deduce the income-demand curve or the Engel function.

. dq/q
: —1or, 9 _4
Solution : We have, e,, = 1 or, AM/M
dg _dM dq
or, rRE) . Now, integrating we get, J j_ or, log g =log M + log k where

log k = constant.

or, log g = log(kM) .. g =kM

This is our income-demand curve or Engel curve which is, in this case, an upward
rising straight line passing through the origin.

In this case also, we may follow the alternative method as followed in the case of
price elasticity. We first apply the log-definition of elasticity and then use the technique
of integration to get the income-demand curve.

We have, e, = 1

dlogq _
on, dlogM

or,dlogg=dlogM

Integrating, Id logqg = jd logM
or, log g = log M + log k where log k = constant or, log q = log(kM)
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. g =KkM is our desired income-demand curve or the Engel curve.
In the same manner we can deduce the income-demand curve if the value of income
elasticity is given.

dg/q B

Lete,,= B, a constant. So, MM

or, dq_q =B. dVM Now, integrating we get, log g = B log M + log k = log(kMP)

. 4 =kMB is our income-demand curve or Engel curve.

Following our alternative method of using log-definition of elasticity, we have, g,, =

dlogq
" dlogM

Integrating, Id logg = Bjd logM

=B ..dlogg=p.dlogM

or, log q = B log M + log k = log(kMB)
. q=kMB is our income-demand function or Engel function.

4.9.3 Indifference Curvefrom MRS

By using the technique of integration, we can deduce the equation of the indifference
curve ifthe value of marginal rate of substitution (or the absolute slope of the indifference
curve) is given. Let us show it.

Let the utility function of the consumer is : U = f(q,, g,). Along an indifference curve
(1C), utility level is constant, say, U,. So, the equation of the IC is : U, = f(q,, g,). To
know the slope of an indifference curve, we take total derivative of the utility function.

Thus, dU = Z—U.dql +§—U.dq2 = MU, .dg, + MU,dq,
q

1 2
Now, along a given indifference curve, utility is constant, So, dU = 0. Then we get,
MU,dq, + MU,dg, =0
or, MU,dg, =-MU,dq,

d .
or, d_%: slope of an indifference curve = —

1 U2

MU,
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Under the assumption, MU, > 0, MU,, > 0, 3&< 0 i.e., slope of the indifference
1

curve is negative. The absolute slope of the indifference curve is called the marginal
rate of substitution (MRS). Thus, MRS = _dg, = MU, = U/ o, .
dg, MU, dU/aq,

If this MRS or the absolute slope of the indifference curve is given we can deduce
the equation of IC with the help of the technique of integration. We consider an example.

Example 4.11 : The slope of the indifference curve is everywhere equal to (—q—zj.

0,
Deduce the equation of the indifference curve.

Solution : Slope of the indifference curve = d&:—q—z or, d&: _da,
dql q1 q2 ql

Integrating, J‘dq& = I% or, log g, = -log g, + logU where log U is a constant.
1

2

U U
- log g, = log 0 So, g, = q, °" Y=,

1
This is the equation of the indifference curve.

4.9.4 |soquant from MRTS

By means of the technique of integration we can deduce the isoquant if MRTS is given.
Let the equation of the production function be = q = f(K, L) where K and L are the
amounts of capital and labour respectively. Along an isoquant, output is fixed, say, d,,
To know the slope of the iso-quant, we take total derivative of the production function.

of of
= —dK+—dL =
We get, dq oK oL MP, dK + MP, .dL.
Now, along an iso-quant, output is fixed, say, at g,. So, dg, = 0. Then we have,
MP,dK + MP dL =0

or, MP, dK = -MP_dL

dK MP,
So, slope of the isoquant = — = ———*%.
P q dL  MP,
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dK
Under the assumption that MP, >0, MP, > 0, slope of the isoquant = —— < 0.

dL
Marginal rate of technical substitution (MRTYS) is the absolute slope of the isoquant.
Thus, MRTS = —d—K: MP, .
dL  MP,

Now, if this slope of isoquant or MRTS is given, we can deduce the equation of the
isoquant by means of the technique of integration. Consider an example.

Example4.12: If MRTS of K and L is given by %.E—Jr:, deduce the equation of the
+

isoquant.
Solution : We have, MRTS = _d_K:g. K+b
d. B L+a
1 1
- = —-a dL
or, B.K+b.dK L +a

Integrating we get IBL.dK =—ocf L a

'Y K+b L+a

or, B.log(K + b) =—a log (L + a) + log g where log g = constant.
or, B log(K+b) +alog(L+a)=1logq

or, log(K + b)? + log(L + a)* = log q

o log[(K + b)B.(L +a)*] =log q

So, g=(K+b)B(L +a)~

This is the equation of our desired isoquant.

4.9.5Measurement of Consumer’s Surplus

The concept of consumer’s surplus has been given by Alfred Marshall. Prof. J. R. Hicks
has given a simple but workable definition of consumer’s
surplus. According to him, consumer’s surplus is the P4
difference between the two prices— the price which the
consumer is willing to pay rather than go without the thing A

and the price which he actually pays. In other words, %B
consumer’s surplus is the difference between demand price Po wf_@
and actual price. We have tried to clarify the concept in figure s
4.4. Let our inverse demand function be : p = f(g). Now, at  ©' Qo q
price p,, the consumer purchases Oq, amount of the (Fig. 4.4)
commodity. So the consumer actually pays = Op, x Oq, =

OOp, Bq,. However, the consumer was willing to pay for Og, units = area OABq,. So,




346 NSOU e PGEC-1V

consumer’s surplus = area OABq,, — area Op,Bq,. Hence the triangular are Ap,B

do
represents consumer’s surplus. Thus, formally consumer’s surplus = jf(q).dq —Po.
0

Thus, by applying the technique of integration, we may determine the size of consumer
surplus.
Let us give an example on consumer’s surplus.

Example4.13 : Given the inverse demand function, p = 80 — 2q, determine consumer’s
surplus if p = 30.

Solution : Here p =80 —2q =1(q)
Ifp=230,then80-29=300r29=80-30=50..9=25
Thus, p, =30, q, = 25.

do 25
Now, consumer’s surplus = '[f(q)dq — Pl = I(80 —2g)dg-30x25
0 0

= [80g—q°]* — 750 = 80 x 25 — (25)2 - 750
=2000 - 625 - 750 = 2000 - 1325 = 675
4.9.6 M easurement of Producer’s Surplus

Producer’s surplus is the difference between two prices : price the producer actually

receives and the price without which the producer would

not sell the commodity. In other words, producer’s surplus p4 p = h(q)

is the difference between actual price and the minimum

supply price. The concept is explained in the figure 4.5. D
In this figure we have drawn the inverse supply curve p = Po %

h(g). Now, at price is p,, suppose the amount of sale = Oq,. C

So, the seller or the producer receives = Op, xOq,, = area

Op,Dq,. However, the producer was willing to supply Oq, o) 0 >

amount of output if he would get the amount = area OCDq,,. i g

Thus, producer’s surplus = area Op,Dg, — OCDq,,. Hence (Fig. 4.5)

the triangular area Cp,D respresents producer’s surplus. Thus formally producer’s surplus

Ao
= poto— [ (a)dg
0

We see that by applying the technique of integration, we can determine the amount
of producer’s surplus.
Consider the following example.
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Example 4.14 : Given the inverse supply function p = 30 + 2q, determine producer’s
surplus if p = 50.
Solution : We have, p =30 + 2q

If p =50, we get, 30 + 2q =50

or,2q=50-30=20 ..q=10

Thus, we have, p, = 50, g, = 10

Now, producer’s surplus is given by the expression,

= Pyly— f h(q)dg =50 x 10 - j (30+2q)dg =500 - [30q + G2] 0

=500 - 30 x 10 — 10?2 = 500 — 300 100 = 100
4.9.7 Miscellaneous Examples on Application of Integration in Economics
Example4.15: MR = a — 4bq. Deduce the demand function.

Solution : We know, MR = Z—R where R = total revenue. Differentiating total revenue
q

function with respect to g, we get MR function, Hence, integrating MR with respect to

g, we shall get total revenue(R) function as integration is the reverse process of

differentiation. From this total revenue function, we shall get the average revenue (AR)

function or the demand function.

We have, MR = E .. dR=MR.dq
Integrating, IdR :IMR.dq

4hq? . . )
or,R= I(a —4bq)dg =aq— > +k where k is the constant of integration.

Thus, R = aq — 2bg? + k
Now, we know that if g = 0, R = 0. So, here k = 0. Hence our total revenue function is :
R = aq — 2bg?

R_pxq

Now,R=pg .. AR= —= =p.
q q
—2bg®
So, inour case, AR=p = %z % =a-2bq

This is our desired demand function or AR function.
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Example4.16: If MR =81 — x2, find maximum TR. Also deduce the demand function.

Solution : As MR = dT_R we can get TR by integrating the MR function.

dx
3
So, TR = IMR dx = j(81—x2)dx = 81x —X?+ k where k is a constant.
3
Now, we know that TR = 0 if x(sales of output) is zero. .. k=0.So, TR= 81x—% .

2

X
S0, AR = TR =81 - —.
X 3
X X

So, the demand function is: p (= AR) = 81 - 3

Now we shall determine the maximum value of TR by applying the technique of
integration. We know that integration of MR gives us TR. So, TR will be maximum
when MR = 0. So, we put MR =0

or,81-x2=0,0rx2=81 .. x=%9

Asx40,x=9

So, when x =9, TR will be maximum.

Hence we shall integrate MR function with respect to x in the interval [0, 9].

9 9 379
Thus, maximum TR = jMRdx = [(B1-x")dx = {sn—%}
0 0

0

9x9x9

=81lx9- =81x9-9x9x3=729-243 =486

We can check our result by applying the technique of differentiation. We have,

3 2
TR = 81x—%. Now, TR will be maximum if (i) d(;r—R:O and (ii) dd
X

;I(-ZR <0
. dTR
Here, from (i), v 81 - x2.

Putting T—R:O,weget81—x2:0 SLX=%9
X
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d’°TR
N =-12x
e
2 2TR
ix=-9, TR _15. 0. 1fx=9, LR = 180
dx? dx

So, TR is maximum when x =9

3 X
Now, putting X = 9, maximum TR = 81x—% =81x9- E: 486.

Example 4.17 : Given MC =500 - 6q + g2, deduce the total cost(TC) function if TFC
=7000 (g = output).

T
Solution : We know that MC = (L—qc ».dTC = MC dg. So, TC = [ MCdg

Putting the equation of MC, we get,
TC = [(500-60+°)dq

6 2 3
=500q —%+q§ + k where k = constant

3
=500q - 302 + L-+k

Now, if =0, TC = TFC =k, So, k = 7000
Hence the equation of the desired total cost function is :

3
TC = 500q — 32 + % +7000

ab
(q+b)?

Example 4.18 : Deduce the demand function if MR = —C(a, band c are

constants and g = amount of sale of output).
Solution : We shall first deduce the TR function and then from TR function, we shall
get AR function or the demand function.

Now, we know that TR = IMqu

ab 1
= j|:(q+b)2 _C:|dq = @_Cq'Fk (k:COI’]Stant)
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= ——-cqg+k
q+b q

Further, ifg=0,TR=0
.-.—@+k=0 or,k=a

o e, @ o _agrab-ab
So,TR="0"p "m0 U7 gvp

L TR= & —cq.
q+b
This is our desired TR function.
pxq
q

Now, TR=pxq ..AR=

=p

- pEAR) = IR__2 ¢
q q+b
This is our desired demand function or the AR function.
Example 4.19: If MC = AC for all levels of output (), then prove that total cost(C) is
a multiple of g.
C, 9C_dy

dC
Solution : We are given that MC = AC i.e., —=— or,
dg ¢ C g

Integrating, deC = qu_q

.. log C =log g + log m where log m = constant or, log C = log(mq)

So, C = mq i.e., total cost (C) is a multiple (m) of g. In this case, the total cost
dc _
dg

function is a straight line passing through the origin, and AC = S mand MC= m.
q

So, AC = MC = m will be a horizontal straight line and they will coincide.
Example 4.20 : If the elasticity of factor substitution (o) = 1, deduce the production
function.
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Solution : We are given that the elasiticity of substitution,

d(K /L)

__ KI/L
L o= g, TMP)

MP, / MP,

dlog(K/L)

In terms of logarithms,the formula of elasticity of substitution, c =
9 4 = dlog(MP_/MP,)

Now, ¢ = 1. So, d log (K/L) = d log(MP /MP,)
Integrating both sides, we get,
log(K/L) = log(MP /MP,) + log(a/B) where log (a/B) = constant

o MP K _a MP_
or, log (K/L) =log| B MP

oL B MP,
MP
Now, MPL is the absolute slope of the isoquant, i.e., MP. _ —d—K Putting this
K MP, dL
value, we get, — K__adK or, B,d_L:_a aK
L pdL L K

Again integrating, we get, B.log L = -a log K + log (%)

q q q).
= — al By = — —
or B.log L + o log K Iog(A] or, log(K*LP) Iog(A] where log (A] is a
constant.
q_ _
So, AC (KeLP), or, g = AK«LP
This is our desired production function. Inthis case, our production function is Cobb-

Douglas type. We know that in the case of Cobb-Douglas production function, the
elasticity of substitution is equal to unity.
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Example 4.21 : Given the demand function p = 20 — 3x, find consumer’s surplus
assuming that market equilibrium is attained at p, = 5, x, = 5.

5
Solution : Consumer’s surplus= [ (20-3x) dx - p,X,
0

25
= {20x—3i} _5x5=20x5- XX og
2 0
75 200-75-50 75
> > > =375

Example4.22: The demand law for a commodity is : p = 20 — 2D — D2. Find consumer’s
surplus when demand (D) is 3.

Solution: WhenD =3,p=20-2D-D2=20-2x3-32=20-15=5.
So,p,=5and D, =3

Dy 3
Now, consumer’s surplus = Jf(D)dD—pODO = I(ZO—ZD—Dz)dD—pOD0
0 0

3P 3
- {ZOD—DZ—%} ~3x5 290 x3-32— %_15

0
=60-9-9-15=60-33=27

Example4.23 : Demand function for acommodity is : p = 20 — 3D. The supply function
on this market is : p = 2D. Find consumer’s surplus at equilibrium price. Also find
producer’s surplus at the equilibrium point.

Putting demand price = supply price, we get, 2D =20 - 3D, or 5D =20 .. D =4,
Thenp =2D =2x4=28.Thus, p, =8, D, =4.

4
Now, consumer’s surplus = I(ZO —3D)dD -p,D,
0

3 4
= [ZOD—EDZ} —8x4 :20><4—gX42—32=80—3><8—32=8O—56=24

0
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Producer’s surplus will be obtained by utilising the supply function. Here, producer’s
suplus at the equilibrium combination p, = 8 and D, = 4,

4 D2 4
= oD, ~ [2DdD :8X4—{2.7} :8><4—[D2]z:8><4—4><4:16
0

0

Example 4.24 : Given the demand function, p, = 4 — x? and the supply function p, =
X + 2, find consumer’s surplus and producer’s surplus assuming perfect competition.

Solution : Putting p, = p,, we get, 4 —x2=x + 2
or,x?+x-2=0or (x+2)(x-1)=0
SoXx==-2,1.Asx£0,x=1

Thenp=x+2=1+2=3.Thus, Pp=3, %=1

0:
1

3
ax -2 | _3x1
3 0

1
Now, consumer’s surplus = J(4—x2)dx—p0x0 =
0
_12-1-9
3

Wl

:4_3_3
3

1

Producer’s surplus = PyX, —I(x +2)dx
0

) 1
6-1-4 1
=3x1- X_+2X :3_£_2: ==
2 2 2 2

0
It may be noted that to determine consumer’s surplus, we have used the demand
function i.e., the equation of demand price (p,) while, to determine producer’s surplus,
we have used the supply function i.e., the equation of the supply price (p,).

Example 4.25 : The demand functionis: D = %_g while the supply functionis p =

5 + D. Determine consumer’s surplus and producer’s suplus at equilibrium price.

Solution : To determine equilibrium price, we first put the value of D from the demand
function into the supply function.

25 p
= =5+—-——
Thusp=5+D 28
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p_ . 25 9p 45 . _ 45 8

or,p+—==5+—o0or, —=— . = —x—=10

P 8 4 8 4 P 4 9
Now,p=5+D .. D=p-5=10-5=5
Thus, equilibrium price = p, = 10 and equilibrium quantity = D, = 5.
Again, our demand function is : D :%—g

. . . p _ 25
Writing it in inverse form (i.e., p as a function of D) we get, g = D

or, p=50-8D.
This is the inverse demand function.
Now, consumer’s surplus at equilibrium price and quantity,

5 5
= [(50-8D)dD-p,D, = [SOD—gDZ} ~10x5
0

0
=50x5-4x52-10x5=250-100-50=100

Now, producer’s surplus at p, = 10 and D, = 5 will be obtained by utilising the
supply function. Here the supply function is given as the inverse supply function i.e.,
price as the function of supply.

5
Now, producer’s surplus = P,D, —I(5+ D)dD
0

5
D? 5x5
= poDo{5D+7} =10x5—5><5—7

0

25 100-50-25 25
=50-25- —=———F——=—=125
2 2 2

4.10 Summary

1. Concept of Integration : The mathematical technique of integration has two
meanings. First, integration means a process of reverse differentiation. It is more
specifically called indifinite integration. In the second or alternative meaning, integration
means a process of summation. More specifically, it is called definite integration. The
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result of integration is called integral. The function or which the technique of integration
is applied, is called integrand. The process of integration is denoted by the symbol |.
There are some rules of integration.

d
2. Indefinite Integral : If g(x) is a function of x such thatd—x[g(X)] =f(x), then the

infinite integral of f(x) with respect to x is the function g(x). In notation, I f(x)dx =g(x).

3. Definite Integral : Definite integral may be regarded either as an area or as the limit
of a sum. The area enclosed by the curve y = f(x) and the x-axis over an interval of x is
called the definite integral for the function over that interval. Definite integral has some
important properties.

4. Application of Integration in Economics : There are many uses of integration in
Economics. As a reverse process of differentiation, integration helps us to know the
total function from its marginal function. Thus, by applying the technique of integration,
we can get the total pruduct function from the marginal product function, total revenue
function from the marginal revenue function, total cost function from the marginal cost
function, indifference curve from its slope or marginal rate of substitution (MRS),
isoquant from its slope or marginal rate of technical substitution (MRTS), etc. We can
also derive the demand function by means of integration if the elasticity of demand is
given. Again, as a measure of area under a curve, integration may be used to measure
consumer’s surplus, producer’s surplus, etc.

4.11 Exercises

Short Answer Type Questions

What is integration?

Define definite integral.

What do you mean by indefinite integral?

State the power rule of integration and give an example.

o~ w e

Evaluate j 5x*dx

6. Evaluate j dx

7. State the exponential rule of integration.
8. State the logarithmic rule of integration.
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9. What is the rule of integral of a multiple?
10. State the rule of the integral of a sum.

11. Evaluate | (x° +3x+5)dx

12. Evaluate | (5x* —7x—8)dx

13. State the rule of substitution used in integration.

3
14. Evaluate | 7X°dx
1

d
15. Evaluate J'l.dx

q
16. Evaluate J' 7e*dx
p

17. State the fundamental theorem of calculus.
18. Define consumer’s surplus in terms of integration.
19. Define producer’s surplus using the concept of integration.

20. If income elasticity of demand, e,, = 1 at all points on the income demand function,
then deduce the income-demand function or the Engel function.

Medium Answer Type Questions

Distinguish between definite integral and indefinite integral.

State the rule of integration by parts.

Ilustrate the rule of substitution with a suitable example.

Illucidate the concept of integration as an area.

How can you get TR function from MR function and TC function from MC function?

2L N

How will you get the demand function by the application of integration, from the
elasticity demand?

7. If the absolute value of price elasticity of demand is (3, then deduce the demand
function.
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d

8. The slope of indifference curve(d—i:] is everywhere equl to(—¥]. Deduce the

equation of the indifference curve.

9. MC=2+3q+—=. Find TCif f(1) = 21

Ja

10. MC =25 + 309 — 992 and TFC = 100. Find TC, TVC, AC and AVC.
11. MPC = 4/5 and C = 100 when Y = 0. Deduce the consumption function.

12.p=45- % is the demand function. Find consumer’s surplus if p = 32.5.

13.p, =4 - ¢? and p, = q + 2. Determine consumer’s surplus and producer’s surplus
under perfect competition.

14.p, =16 — g2 and p, = 29 + 4. Determine consumer’s surplus and producer’s surplus
in equilibrium.

Long Answer Type Questions
1. State the rules of integration with suitable illustrations.
2. State the basic properties of definite integral.
3. Mention some major applications of integration in Economics.
4. (a) MR =15 - 2q — g2. Find maximum TR.
(b) MR = a - 2bqg. Derive TR and AR functions.
5. (a) MC = 2 + 3ed. Find TC if TFC = 500.
(b) If MC = a + bq, deduce AC function.

0.4
6. (@) MPC = W and C = 80 when Y = 0. Deduce the consumption function .

1

(b) MPS = 0.3-0.1Y 2and S = 0 when 'Y = 81. Find the saving function.

q,—a
ql _p - Show that one form of the utility function is :
2

U= (ql_a)Z + (qz_b)z

7. MRS =
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8. Let MRS = %. 9 +D . Show that one form of the utility function is :
q,+a

U =(q, +a)*(d, + b)P.

4.12 References

1. Mehta, B.C. and G. M. K. Madnani (1997) : Mathematics for Economists, Sultan
Chand and Sons.

2. Chiang, Alpha C. (1984) : Fundamental Methods of Mathematical Economics,
McGraw Hill Book Company.

3. Sarkhel, Jand A. Bhukta (2008) : An Introduction to Mathematical Techniques for
Economic Analysis, Book Syndicate Pvt. Ltd.




Unit 50 Matricesand Deter minants

Structure

51 Objectives

5.2  Introduction

5.3  Definition and Concept of aMatrix

54 Matrix Operations

5.5 Different Typesof Matrices

5.6 Determinant of aMatrix and itsAssociated Concepts

5.7  Propertiesof Deter minants

5.8 Inverseof aMatrix

5.9  Solution of Simultaneous Equationsby Matrix I nverson M ethod

5.10 Jacobian Determinant, Hessian Determinant and Hessian Bordered
Deter minant

5.11. Applicationsof Matrix and Deter minant Operationsin Economics
5.11.1 Derivation of Slutsky Equation
5.11.2 Leontief Static Open Model
5.11.3 Cramer’s Rule for Solving Problems in IS-LM Model

5.12 Summary

5.13 Excercises

5.14 References

359



360 NSOU e PGEC-1V

5.1 Objectives

After studying the unit, the reader will be able to know
e Matrix and its different types
e Matrix operations
e Determinant and its properties
e Matrix inversion and its application to solve simultaneous equations
e Concepts of Hessian Determinant and Hessian Bordered Determinant
e Applications of matrix and determinant in Economics

5.2 Introduction

In economic models, we have, in many cases, a set of simultaneous equations. We are
required to solve those simultaneous equations. Matrices and determinants greatly help
us in this regard. Further, matrices are often used to simplify notation when dealing
with a large number of simultaneous equations. Hence we shall consider in this unit the
concepts of matrices and determinants and their uses in solving simultaneous equations
very often used in economic models.

5.3 Definition and Concept of a Matrix

Any rectangular array of numbers is called a matrix. A matrix with m rows and n columns
is of the order (m x n). An (m x 1) matrix is called a column vector and a (1 x m) matrix is
arow vector. The terms “array’and matrix are used interchangeably. If A denotes the array
or the matrix of order (m x n) then the matrix A may be written as,

dj; d;p ... 4y, dj; Qg . dg,

a a .o a a a ..o a
A=| 2 22 2n or, A= 21 22 2n

dy Qe - Ay d, adg, .. A,

Thus, a matrix is denoted by the symbol [ ] or (). The elements of the matrix Aof order (m
x n) are the coefficients aij(i =1,2,....,m,j=1, 2, ..., n)where the first subsctipt is the row
index and the second subscript is the column index. Thus, 3 is the element of matrix Ain i-th
row and j-th column. For example, a,. is the element of a matrix or of an array in its third row
and seventh column.
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5.4 Matrix Operations

We have said that a matrix is any rectangular array of numbers (real or complex). To deal with
matrices, we have to know matrix operations. \We here mention below some basic matrix
operations.

(1) Addition of matrices: To add two or more matrices, they should be comfortable for
addition. Two or more matrices are said to be comfortable for addition, ifand only if, they are
of the same order. Then, ifA= (Aij)mxn andB = (bij)mxn, then the sum of these two matrices,
A+ B is defined by the matrix C = (cij) where C;i=ay+t bij. Thus, by adding the corresponding
elements of two or more matrices, we can get the sum of those two or more matrices. e give
an example.

Example5.1.: A= 37 and B = > 3 .FindA+B.
9 4 2 6

Solution: Let C=A+B. So, C= 37 + 5 3 = 3+5 743 = 8 10
9 4| |2 6 9+2 4+6 11 10

This addition operation of matrices will hold for any number of matrices, provided they are
comfortable for addition.

(ii) Subtraction of matrices: Subraction is also one kind of addition and hence the
operation of subtraction of matrices is exactly similar to that of addition. Now, two or more
matrices are comfortable for subtraction if they are of the same order. IfA=(a) . and B =
(0;) p» then the difference A— B is defined to be the sum of A+ (-B). If this difference is
defined by the matrix C, then C = (cij) where Cjj =@y~ bij. Thus, simply by subtracting the

corresponding elements of two matrices, we may get their difference. We cite an example.

10 5 8 6 7 9
Example5.2.: IfA= 7 9 2 and B:{S 5 6}

Solution: LetC=A-B

10 5 8 6 7 9 10-6 5-7 8-9
ThenC=A-B= - =

7 9 2 5 3 6 7-5 9-3 2-6
4 -2 -1
“l2 6 -4

(iii) Product of matrices: Multiplication of two matrices is possible if the two matrices
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are comfortable for the product. When the number of columns of a matrix A is the same as the
number of rows of another matrix B, then A is said to be comfortable for the product AB. We
then say that the product AB is defined and it is denoted by A.B or AB.

Suppose, A = (aij); wherei=1,2,..mj=1,2, .. n,ie., Aisamatrix of order
(m % n). Further, B = (bjk) wherej=1,2,..,n,k=1,2,..,p, e, Bisamatrix of order (n
x p). Here, the number of columns in A= the number of rows in B = n. So, the product AB is
defined and it will be a matrix of order (m x p). Let the product be the matrix C. Then, C =

n
— - a.b.
(cy) where ¢, =a,b,, +a,b, +..+ab = ; Yk .

Here C isa matrix of order (m x p). Let us give an example.

10
Example5.3: Given A = 123 ,B=12 2
0 > 3 4

Find AB. Also finf BA, if possible.
Solution : Here Aisa (2 x 3) matrix and B isa (3 x 2) matrix. So, the number of columns of
matrix A = the number of rows of matrix B = 3. So, the product AB is defined or A is
comfortable for the product AB. Here AB will be of order (2 x 2).

12 311t O [1x142x243x3 1x0+2x4+3x4
Here, AB{O A 5} 21 = 0x1+4x2+5x3 0x0+2x4+4x5
3 4
14 20
~ |23 28
10
. 12 3
Let us consider BA.Wehave,B=|2 2| A=
3 4 0 4 5[,
L 3x2

Here B is of order (3 x 2) while Aiis of order(2 x 3). Thus, the number of columns of
matrix B = number of rows of matrix A= 2, So, we can find BA or B is comfortable for the
product BA. Here the product BA will be of order(3 x 3)
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0 12 3 1x14+0x0 1x2+0x4 1x3+0x5
HereBA=C=|2 2 {0 4 5} = 2x14+2x0 2x2+2x4 2x3+2x5
3 4 3x1+4x0 3x2+4x4 3x3+4x5

1 2 3
2 10 16
3 22 29

We see that BAis of the order (3 x 3). It may be noted that in this case, AB = BA.

5.5 Different Types of Matrices

There are different types of matrices. We here mention some major types.

(1) Column matrix : We have said that a vector is a special type matrix with a single row
or single column. Thus, a matrix with a single column is called a column matrix or a column

vector. Its order is (m % 1). For example, A=| g. | isacolumn matrix or a column vector of

order (m x 1). Taking a specific numerical example, A= isa column matrix or column

e SNt

vector of order (4 x 1). Inboth cases, the number of column is one.

2. Row matrix : Amatrix having a single row is called a row matrix or a now vector. Its
order is (1 x n). Thus, A= [a, a,... a ] is a row matrix or ros vector of order
(1 x n). Taking numerical example, A=[3 0 7 5 —2] isarow matrix or row vector of order
(1 % 5). In both examples, the number of row is one.

3. Trangposed matrix : If rows and columns of a matrix are interchanged, then the new
matrix thus obtained is called transposed matrix of the original matrix. If Ais the original
matrix, then the transpose of matrix A is denoted by A’ or AT,
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Thus, if A= (a;) of order (m x n), then transpose of A, denoted by, A’ or AT = (aj) of
order (nxm) = (aji) of order (n x m).

a11 a21

} ,then A’ or AT = a4, 8z
2x3 a13

all a12 a13

a21 a22 23

For example, if A= {

83 3x2

1 2 3
Taking a numerical example, if A= ,thenA’ orAT =
4 5 6],,

w N
(o TN & 2 B SN

3x2

We have some properties of transpose of a matrix.
Property 1: Transpose of transpose of a matrix is the original matrix, i.e., (A") =A

15
Example: Let A= Thenar= |1 2
2 6 5

6
1 2] 1 5
Now, (A’)’:|:5 6:|:|:2 6:|:A

Property 2 : Transpose of the sum (or difference of matrices is the sum (or difference) of
the transposes of the individual matrices, i.e., (A+B) =A'+B'.

3 5 1 3
Example: LetA= 46 and B = 3 5

4 8 4 7
Then,A+B = and (A+B)' =
7 11

8 11
_ 3 4 13 4 7
Again, A’ = 5 6 and B' = 3 5 .ThenA'+B’' = 8 11 =(A+B)".
Similarly it can be checked that (A-B)' =A'-B'.

2 2 2 1
In our example, (A-B) = 11 and (A-B)' = 5 1
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. 3 4 1 3
Again, we have, A’ = and B’ =
5 6 3 5

2 1
~A-B {2 J = (A-B)

(iv) Square matrix : A matrix having equal number of rows and columns is called a
square matrix.

a, a5, .. a
dy ady d,, | . . a; ap

Thus, A= is a square matrix of order n. IfA= A a | thenA
21 22
a, a, .. a,

all a12 a13
is a square matrix of order 2. Similarly, B=| @, 8 8y | isasquare matrix oforder 3. In
a31 a32 a33

our example 5.1, all 3 matrices A, B and C were square matrices of order 2, but in example
5.2, none of the 3 matrices A, B and C was a square matrix.
(v) Symmetric matrix : Asquare matrix (aij) for whichij=jiforalliand all j is called a
symmetric matrix. Fow example, suppose A= (aij) wherei=1,2,3andj=1, 2, 3. Thus, A
all a12 a13
= 8y 8 &3 . Now, Awill be called a symmetric matrix ifa,, =a, ,a,,=a;,and a,,
a31 a32 a33
=a,,. We give an example putting values for 3 ’s.

a b c

LetA=|b d e
c e f

Then if we interchange 8;’s for 3s, .e., if we take the transpose of A, then

A= =A

o T 2
O O T
-~ D O
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Hence, Ais a symmetric matrix. Thus, in case of a symmetric matrix, A=A'.

Thus the see that transpose of a symmetric matrix is the original matrix itself, i.e., ifAis a
symmetric matrix, then A’ =A. The converseis also true. i.e., if A’ = A, then Ais a symmetric
matrix.

(vi) Diagonal matrix : Adiagonal matrix is a square matrix with all its non-diagonal
elements equal to zero. Thus,

a, 0 0 O
0 a, 0 O
A= is a diagonal matrix of order n. Taking a numerical
0 0 0 a,
1 00
example, A={0 5 0] isadiagonal matrix of order 3. If may be noted that a diagonal
0 0 4

matrix is a symmetric matrix also i.e., A’ =Afor a diagonal matrix.

(vii) Identity matrix or unit matrix : It is a special case of a diagonal matrix. Ifall the
diagonal elements of a diagonal matrix are equal to 1, then the matrix is called a unit matrix or

10
an identity matrix. It is generally denoted by the symbol I. Thus | = {0 J is an identity

100
matrix oforder2,1={0 1 0] isanidentity matrix of order 3, and so on.
0 01

It may be noted that for an identity matrix, I = I’. Pre-multiplying or post-multiplying any
comfortable matrix Aby it gives the same matrix. For example, if Aand | are comfortable, and
I and A are also comfortable, then Al = IA. This will happen when A and | are square
matrices.

(viii) Orthogonal matrix : Asquare matrix Ais said to be an orthogonal matrix if AA=

!:I



NSOU e PGEC-IV 367

(ix) Null matrix : Amatrix with all elements equal to zero is called a null matrix. Anull

0 00O
matrix is denoted by 0. Thus, 0 = B 8} oro=(0 0 0]/, etc. are examples of null

0 00

matrices. A null matrix is also called a zero matrix. Clearly, for null matrices, we have,
OquAqXT = 0 and Apxq + Opxq = APXq '

pxr

(x) Idempotent matrix : An idempotent matrix is a symmetric matrix which produces
itself when it is multiplied by itself. Thus, a symmetric matrix Awill be termed as idempotent if
AA=A.

It may be noted that the identity matrix | is an idempotent matrix i.e., I = 1. Let us check

_ 10 1 0|1 O 10
it. We have, | = 0 1 . Now, Il = 0 1110 1710 1 =1

Thus, I isan idempotent matrix.
We should also note that as I is symmetric, I’ = 1.

5.7 Determinant of a Matrix and its Associated Concepts

In general, a determinant is a square array of numbers. It is so called as it is used in the
determination of the solution of a system of simultaneous equations. To every square matrix A
= (aij) of order n, there corresponds a number known as the determinant of matrix A. It is

a, a, .. a,
a21 azz a2n . B .

denoted by |A| or A or . The order of a determinant is the number of its
a, a, .. a,

rows (or its columns since the array is square). In our above example, the given determinant
isof order n.

Let us see how determinants help in the determination of the solution of a system of
simultaneous equations. Ve take the simplest case where we have a system with two equations
in two unknowns, x and y.

ax+hy=k;
ax+hy=k,

where a;, a,, b;, b,, k, and k, are known constants. By the process of elimination we can
very simply solve this system for x and y. This process gives,



368 NSOU e PGEC-1V

X = k1b2 — k2b1 and y= kzal — k1a2 .
a,b, —a,b, a,b, —a,b,
It may be noted that the denominator is the same in both expressions and its is computed
from products of the co-efficients of x and y. We may write the coefficients in an

a b,
array >< =ab,-ab,
4 b

Fromthis, it is obvious that the denominator can be obtained by taking the product indicated
by the downward sloping arrow (a, b,) and then subtracting from it the product indicated by
the upward sloping arrow (a,b, ). Similarly, we may write the numerators as arrays of coefficients
asfollows :

k, b, & k,
Forx, | D | =kib,—k by andfory,| < | =ak, —ak,
k2 b2 a, k2
Thus, the solution of above system may be written in the form of following arrays:
k, b, a, k,
k, b, a, k
= and y=1>—-2
3, b Y a, b
a, b, a, b,

We refer to arrays of this kind as determinants, since they help in the determination of the
solution of a system of simultaneous equations.

In this connection, we like to mention that a determinant is, by definition, a scalar. However,
a matrix does not have a numerical value. In other words, a determinant is reducible to a
number, however a matrix is, in contrast, a whole block of numbers. Further, a determinant is
defined only for a square matrix while a matrix as such need not be square.

Expanson of adeterminant : Let us see how we can expand a determinant. Expansion
of adeterminant is the computation of its value. Suppose we have the following determinant of
order n.

a11 a12 a'13
a21 a22 a23 a2n

a, a, a,; . a
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Here, any element a; is the element inthe ith row and the jth column of the determinant (i,
1=1,2,3, ...,n). Thus a, is the element in the third row and fourth cloumn. Let us see how
we can expand this determinant or compute its value. Before doing that, we give the following
essential definitions.

Principal diagonal : The principal diagonal of a determinant consists of the elements in
the determinant which lie in astraight line from upper left-hand corner to the lower right-hand
corner. In our above determinant of order n, the elements of its principal diagonal are a,,, a,,,
coey Bggy ey A,

Minor : The minor of an element belonging to a determinant of order nis the determinant
of order (n— 1) obtained by deleting the row and column which contain the particular element.
For example, in the following fourth order determinant, the minor of the element a,, can be
obtained by removing the row and column containing this element, i.e., by removing the second

row and the third column of the original determinant.

a11 a12 a13 a14
a21 a22 a23 a24
Original determinant=|a;, a,;, a5, ay,
a41 a42 a43 a44
all a12 a14
The minor ofa,, = |85, @; ay| and it is of order (4 — 1) = order 3. Generally, the
a41 a42 a44

minor of anelement is denoted by a capital letter with the same subscrips of the given element.
Thus, insymbol, the minor ofa,, =A,..

Cofactor : The cofactor of an element belonging to a determinant is its minor preceded by
a ‘+’ or ‘=’ sign according as the sum of the subscripts of the element is even or odd. For
example, the cofactor of the element a,, = —-A,; as 2 + 3 =5, an odd number. Similarly,
cofactor of a,, = +A,; as 3 + 3 =6, an even number.

The value or the expansion of a determinant may be obtained by using the cofactors (pre-
signed minors) of its elements. The steps are given below :

Step 1 : Choose any row (or column). (To avoid any confusion students are advised to
choose always the first row).

Step 2 : Multiply each element in the chosen row (or column) by its cofactor.
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Step 3: Add algebraically the products obtained in step 2.

all a12 a13
For example, expanding the determinant, A=a,, a,, a,|, weget,
a31 a32 a33
d, dy Ay Ayg Ay Ay _
A=a, — Y +ag =a Ay ta(tDAL A
a32 a33 a31 a33 a31 32

For example, let us expand the determinant,

3 4 7
_ =3
NN,
7 1 2
=3(-1)-4(-17)+ 7(-5) =-3+ 68 -35=68-38 = 30
Similarly, values of higher order determinants can be obtained. Expansion

(or determination of value) of a determinant of higher order becomes increasingly complicated
as the order of a determinant increases.

3 2 1
+7
2 7

1

2 3
+4(-1
( )‘7 2

‘ =3(2-3)-4(4-21) +72-7)

5.7 Properties of Deter minants

We here merely state the properties of determinants. Students are advised to check them
taking arbitrary numerical examples.
Property 1: If the rows and columns of a determinant are interchanged, the value of the
determinant will be unaffected.
al bl Cl a1 a2 a3
Thus, ja, b, c,|=|b, b, b,
a, by, ¢ |c, ¢, c
Property 2: Ifall the elements ina row (or column) are zero, the value of the determinant

a b, c a, 0 a,
iszero. Thatis, [0 0 O0|=0.Again,|b, 0 b,|=0
a, b, c, c, 0 c
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Property 3: Ifany two rows (or columns) are identical, the value of the determinant is

a, b c a, a, ¢
zero.Thatis, |a, b, c¢,|=0,Again, |a, a, c,|=0
a, b, c, a, a, C,
More generally, ifa row (or column) is a multiple of another row (or column), the value of
the determinant is zero.

Property 4 : If any two rows (or columns) of a determinant are interchanged, the
determinant changes its sign only and not the numerical value.

al bl Cl a2 b2 C2 al bl Cl bl al Cl
Thatis, la, b, c,|=-|a, b, c|-Againja, b, c,|=—|b, a, c,
a3 b3 C3 a3 b3 C3 a3 b3 C3 b3 a3 C3

Property 5: Ifall the elements ina row (or column) of a determinant are multiplied by the
same number k, the value of the determinant is multiplied by k. Stated alternatively, if any row
(or column) of a determinant has a common factor k to all its elements, then this common
factor may be taken out and the value of the determinant will be k times the old one.

a, kb, c a, b, ¢ a b, ¢ a, b, ¢
Thatis, la, kb, c,|=kla, b, c,|-Again, |ka, kb, kc,|=kla, b, c,
a, kb, c, a, b, ¢ a, b, c; a, b, c,

Property 6: If, to all the elements of a row (or column), we add a constant multiple of any
other row (or column), the value of the determinant remains unaffected.
a, b, c| |a, by+ka, ¢
Thatis, la, b, c,|=|a, b,+ka, c,
a, b, c,| la, by+ka; ¢,

al bl Cl a1 bl Cl
Again, la, b, c,|=la,+ka, b,+kb, c,+kc,
a3 bs Cs a3 b3 Cs

Property 7: If all the elements of a row (or column) of a determinant are expressed as the
sum of two (or more) terms, the determinant can be expressed as the sum of two (or more)
determinants.
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a,+k, b, ¢l la b, c| |k, b, ¢
That is, a,+k, b, c,|=la,
a,+k, b, ¢ |a,

b, c,|+k, b, c,

5.8 Inverse of a Matrix

Asquare matrix Aof order nwith |A| = 0 is called a non-singular matrix. If |A| =0, Ais called
a singular matrix. Anon-singular matrix has a corresponding inverse matrix.

all a12 aln
a,) 8y ... A,

Let A= " | and |A| = 0.
an1 an2 ann

-1 -
|Al
Adj A=Transpose of the matrix of co-factors of A. We give an example.

Then the inverse of the matrix A is given by, A Adj. A where

- ) 3 4
Example5.4: Obtain inverse of matrix A= L 2}

=3x2-1x%x4=2.Since |A|#0, matrix Ais non-singular and

3
Solution : Here |A| = ‘1 2‘

hence its inverse exists. A™ = |T}| .Adj. Awhere Adj A= Transpose of the matrix of cofactors

of A.

2 -1
Now, matrix of cofactors of A = { 4 3 }

2 -4
Transpose of the matrix of cofactors of A=Adj A = { 1 3}

2 4 |1 2

(BN
w
|
I

N | w
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Two useful properties of inverse matricesare :

(i) A= L Fromour result, we see that | A™ |= 1.1
|A| 2 |A]
(i) If matrix A is symmetric, then its inverse is also symmetric. Further, AA"1 = A-1A= |
(identity matrix). WWe may check it with our result.

1 2

1 -2 3><1+4><—l 3><—2+4><§
Check: AA™ = F 4} 3 (= 2 2
2

1><1+2><—l 1><—2+2><§
2 2

3-2 -6+6] [1 0 |
“l1-1 —2+3| |0 1|

1 -2 3 4 1x3-2x1 1x4-2x2
Again, A"'A = -
2 2 2 2 2
3-2 4-4

10
= —§+§ -2+3 :{0 JZI
2 2

5.9 Solution of Simultaneous Equations by Matrix I nversion M ethod

Suppose we have a system of n simultaneous linear equations as given below :

89Xy FapX, to.tay X =Ky

Ay X, T A%, ..+ a, X = k2

amlxl + amZXZ tot amnxn = kn

Here aij(i =1,2,..mandj=1,2,..,njandk (i=1, 2, ..., n) are constants. In matrix-
vector form, the above system of equations can be written as

a, 8, .. a, ||X K,
Ay, By e Ay, || X _ K,
a a a X k



374 NSOU e PGEC-IV

1
In matrix notation, AX =Bor, X=A1B= m Adj.A.B

When B is a null vector, the system is called a homogeneous system. If B is non-null, the
system is called non-homogeneous.

Now, consider the case when m =n. In that case, Ais a square matrix. Also suppose that
the system is non-homogeneous, i.e., B is non-null. We also assume that |A| 0. Then, AX =
B

1
or, X =A1B= —  Adj.A.B.
T A

We have the previous result. The only difference is that in this case, m=ni.e., Ais a square
matrix. Our solution for X is known as Cramer’s rule for solving linear equations. As an
example, consider a system of two linear equations considered in section 5.7. We have,

a,x+hy=k;
ax+hy=k,
In this case, we have seen that the solutions are as under :
k, b, a, k
k., b a, k
x=12 "2l gnd y=2_2
a, b a, b,
a, b, a, b,
. . a b . .
We have noted that the determinant of the coefficients 2 b.|COmesas denominator in
2 2
al bl

both the solutions. Let it be denoted by A. Thus, A = is called the determinant of the

a2 2

system as it determines the solutions of the system. To get any meaningful value of xand y, the

a, b

condition is, A=| ' *| # 0. The solutions then by Cramer’s rule be written as,
2 2

k, b| la, k| [a b A

k, b,| [0, k,| &, b,
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Using notations, we may write, x = A andy = 22 ihere A, =| ° A, = :
, 1 A A ' k2 2 ’ ? a2 k2
a, b
and A=t Y.
a2 b2

Consider now the solution of the system by matrix inversion method. The system of equations
iS:
ax+hy=k;
ax+hy=k,
. _ . a, b, ||x k,
In matrix-vecor notations, it can be written as, =
a, b,y
Using matrix-vector notations, we may write, AX =B
1
or, X=A1B=——_Adj.A.B.
Al
We give an example.
Example5. : Solve for x and y for the system,
2Xx+3y=7
4x +2y =10
Solution : By Cramer’s rule, the solutions are as follows : here a, =2, b, =3, a, = 4,
b,=2,k =7k,=10

k, b ‘7 3‘ a, Kk ‘2 7

k, b, [0 2[ -16 a, ky| |4 10 _g
Now, x =22 = =— =2 y= = =_°-1

a, bl [2 3 -8 a, b, ‘2 3‘ 3

a, b, 4 3 a, b, |4 2
So,x=2,y=1

Let us solve the system of equations by matrix inversion method. In matrix-vector notation,

_ 2 3| x 7|
the system can be written as, 4 2|ly|7 |10 e, AX=B

1
. =AlB= — i
L X=A1B IAI.Ade.B.
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2 3 2 3
We have the coefficient matrix A= L 2} and |A|=‘4 2‘ =4-12=-8

1 1
Now Al = —  AdjA= —— . Transpose of cofactor matrix of A.

A [A|
13
_ 1 2 —4T_ 112 -3, | 4 8
|A]|-3 2 8-4 2 1 1
2 4
13
4 8 |7
. =A-1B =
L X=A1B l _i LO}
2 4
8
—£X7+§X10 E_Z - 2
| 4 8 14 4] |4
or, X= = = =
1 7 1 10 7 5 2 1
2 4 2 2 2

X 2
Thus, we have, X = {y} = L} e, x=2,y=1

Thus, we get the same result in Cramer’s rule method and also in matrix inversion method.

We now give an example of a system of three linear equations involving three unknowns.
Let us have the following system involving three unknons : x, y and z.

8 X+ 8,y +a,,Z=kK,

8y X+ 8y + 82 = K,

83X + gy + 83,7 = Kq

a; a, dy
The determinant of the coefficients of the unknownsis: A=Ja,, a,, a,
3 dp Ay
The Cramer’s rule method to solve a system of linear equations may be described as

follows: First, the denominator in the solutions of the unknowns is the determinant of the
coeficients of the unknowns. Second, the numerator in the solution for each unknown is the
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same as the determinant of the coefficients, with the exception that the column of coefficients
of the particular unknown is replaced by the column of constants on the right hand side of the
system of the equations.

k1 a12 a13 a11 k1 a13
k2 a22 a23 a21 k2 a23
. : a,, a a, Kk, a
Thus, the solution of the above system is ; 2 23 Bl y= = A3 =1
a11 a12 kl
a21 a‘22 k2
_[8a 8 k3 ; ; ; ;
z= - Following this rule, we can solve a system of n simultaneous linear

equations in n unknowns.
In the case of matrix inversion method, the procedure remains the same as before. In

matrix-vector notation, the above system may be written as, A, .X, , = B,, so that

3x1 ~ F3x1

1
X=A1B= TA] AdiAB.

5.10 Jacobin Determinant, Hessian Deter minant and Hessian
Bordered Deter minant

Suppose we want to optimise a bivariate function Z = f(x;, x,). Also suppose that the two
first order conditions Z, = Z, = 0 are met. Then, to optimise Z, two second order or sufficient
conditions should also be met. They are as follows :

(i) Z,,>0,Z,,>0foraminimumand Z , <0, Z,, <0 fora maximum.

(i) Z,,.Z,,> (2,,)%

A convenient test for the second order condition is the Hessian matrix or, simply, the
Hessian (named after the 19th century German mathematician Ludwig Otto Hesse). A Hessian
|H| is a determinant composed of all the second order partial derivatives, with the second
order direct partial derivatives on the principal diagonal and the second order cross partial

le ZlZ

derivatives off the principal diagonal. Thus, for our given bivariate function, |H| = 7 7

21 22

where Z,=2,,.



378 NSOU e PGEC-1V

Now, if the first element on the principal diagonal, the first principal minor |H,| =
Z,,>0and if the second principal minor

le ZlZ

|H2| - YA Zzz

=Z,,Z,,—(Z,,)?>0, the second order conditions for a minimum are

21

met. When [H,| >0, |H,| >0, the Hessian is called positive definite. Apositive definite Hessian
fulfils the second order conditions for a minimum of an objective function.
On the other hand, if the first principal minor |[H, | = Z,, <0 and the second principal minor

le ZlZ

z, z, %

H,|= 1125, — (Z,,)?> 0, the Hessian is negative definite. Anegative definite
21

Hessian fulfils the second order conditions for a maximum of the objective function.
Third Order Hessian : Suppose we have to optimise the multivariate function

le ZlZ ZlS

Z =f(X,, X,, X5). In this case the third order Hessian is, |H| = |22 £z Za|. Then, if
Z Z Z

31 32 33

le ZlZ

[H |=2Z,>0,|H,|= <0 and [H,| =[H| > 0 where |H,] is the third principal

21 22

minor, the Hessian |H| is positive definite. A positive definite Hessian fulfills the second order
conditions for a minimum of the objective function. On the other hand, if |H,| <0, |H,| >0 and
|H,| =|H| <0, the Hessian [H| is negative definite. A negative definite Hessian fulfils the second
order conditions for a maximum of the objective function. Inshort, if the principal minors are
all positive, |H| is positive definite and the second order conditions for a relative minimum are
met. On the other hand, if the principal minors alternate sign between negative and positive
(starting with negative sign), |H| is negative definite and the second order conditions for a
relative maximumare met.

THE BORDERED HESSIAN FOR CONSTRAINED OPTIMISATION

Suppose we want to optimise f(x,, X,) subject to the constraint g(x,, X,). In that case, we
form a Lagrange expression : F(x,, X,, 1) = f(x,, X,) + Ag(X,, X,) where X is the Lagrange
multiplier. The first order or necessary conditions to optimise F(x,, X, 1) require : F, =
F, = F; = 0. We assume that the first order conditions are met. Then the second order
conditions or sufficient conditions are to be met. The second order conditions can be
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expressed in terms of a bordered Hessian, |H |, in either of the following two ways :

. 11 I:12 g 0 9, 0,
|H|:F21 I:22 g, or 0, I:11 I:12

gl gZ 0 gZ I:21 I:22

Fll I:12
F, F

21 22

boardered by the first derivatives of the constraint with zero on the principal diagonal. The
order ofa bordered principal minor is determined by the order of the principal minor which is

The bordered Hessian determinant is simply the plain Hessian determinant

being bordered. Hence | H | above represents a second order bordered principal minor

| H2 |, because the principal minor which is being bordered is (2 x 2).
Let us consider the second order conditions for optimisation of a multivariate function inn
variables f(x,, X,, ..., X.) subject to the constraint g(x,, X,, ..., X.). In this case, the bordered

Hessian, |H| can again be expressed as either of the two following ways :

F, R, o R, 0 0O 9 9, .. 0,
_ Fu Fp oo Fa G 9 R R, .. Ry
IHI|... : orlg, F, F, .. F,
F. F, .. F. 0,
9 9, - g, O 9, F, F, .. F,

where | H |= |H. |, because of the (n x n) principal minor being bordered.

Now, if |H | ,|Hs |, - | Hn | <O, the bordered Hessian is positive definite, which is a
sufficient condition for a minimum. It should be noted that the test starts with | H, |, and not
|Hi|.

On the other hand, if |Hz | > 0, |Hs|< 0, |H4| > 0, etc., the bordered Hessian is
negative definite, which is a sufficient condition for a maximum. Thus, if a given Hessian

bordered determinant | H | meets the above mentioned criteria, we are assured of a minimum
or amaximum of our objective function. But if those criteria are not met, further tests are
required, since the given criteria represent sufficient conditions, and not necessary conditions.
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5.11Applications of Matrix and Determinant Operations in
Economics

Matrix and determinant operations have so many applications in Economics. We shall here
consider their applications in the context of derivation of Slutsky equation, Leontief static
open model and solving 1S-LM model. Let us consider them one by one.

5.11.1 Derivation of Slutsky Equation

We know that if price ofa commodity falls, ceterisparibus, its quantity demanded rises, and
vice versa. This is known as price effect. Indifference curve theorists like Hicks, Slutsky,
Allen et. al. argue that this price effect can be decomposed into an income effect and a
substitution effect. As the price of a commodity falls, it becomes relatively cheap than its
substitutes. So, the consumer purchases more of the commodity, giving up some amounts of
its substitutes. This is substitution effect which measures the effect of change in relative price
of acommodity, real income remaining the same. On the other hand, as the price ofa commodity
falls, real income or purchasing power of the consumer rises. Then also demand for the
commodity changes. This is income effect which measures the effect of change in real income
of the consumer, relative price of the commodities remaining the same. Price effect is the sum
ofincome effect and substitution effect (price effect = substitution effect + income effect). The
Slutsky equation (named after Russian mathematician Eugene Slutsky) shows the relationship
among the price effect, income effect and substitution effect mathematically. The equation
states that price effect = substitution effect + income effect. Mathematically,

(8%]:[8%} L (8%]
1 a ,
apl apl U constant prices constant

Let ustry to deduce this equation. Suppose the consumer wants to maximise utility (U) by
consuming two goods, Q, and Q,. Their respective quantities are g, and g, and prices are p,
and p,. Let the given money income of the consumer be y. Thus, formally our problem is to
maximise U =f(q,, g,) subject to the income constraint or budget constraint : y = p,q, +
p,d,. So it is a problem of constrained maximisation. We form the following Lagrange
expression :

Vv =1(q,, q,) + M(y—-p,0, —p,d,) where A = Lagrange multiplier.

The first order conditions to maximise V require,

ﬂ:o,or, f,—Ap, =0 (1)

aq,
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oV
_:o’or,f_kp =0 (2)
o, 2o
oV
o =0,0r,y-p,0a, -p,4,=0 +(3)
Taking total derivative of them and re-arranging, we get,
f,dq, +f,,dq, - p,dA = Adp, ~.(4)
f,,da, +f,,dq, — p,di = Adp, ..(5)
_pldql - pquz == dy + qldpl + qzdpz (6)
In matrix-vector form, the above system of equations can be written as,
f11 f12 —P; dql 7Vdpl
f21 f22 - dqz = kdpz

_pl _pz 0 dx _dy+q1dp1 +q2dp2

We can solve these three equations for dq,, dg, and dA by Cramer’s rule. Then the terms
onthe R.H.S must be treated as constants. Let D represent the determinant of the coefficient
matrix. Let D represent the cofactor of the element in the ith row and jth column. Then

dq, = Adp,D,, +Adp,D,, + (—Ddy +0,dp, +q,dp,)Dy, .(7)
dq, - Adp,D,, +Adp,D,, + (de +0,dp, +9,dp,)Ds, .(8)

We now consider equation (7). We suppose that p, and p, do not change and only y
(income) changes. Then, dp, =dp, =0.

_ay'D31 ) 6ql — D31
— — =—— ..(9
D ( 6y prices D ( )

constant
This equation shows the effect of change in income on the quantity demanded of Q,,

prices remaining the same. This gives us the income effect.
We now consider the substitution effect. In the Hicksian measure of substitution effect,

total utility of the consumer remains the same, i.e., dU =0.
Now, we have the utility function: U =1(q,, g,)
So, dU =fdqg, +f,dqg,

So, 0q, =

Putting dU =0, we get —d&:—l or, MRS = f—
g ] g ’ dql f2 ] f2 .
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Again, from (1) and (2), ::—1 _P .

2 2

Thus, inequilibrium, — 392 _ i _ Py
dg, f, p,
So, p,dq, +p,dg, =0
Hence, from (6), — dy + q,dp, + q,dp, =0
Again, as p, is unchanged, dp, = 0. Then from (7), we get,

aq ] AD
P, ~—1 11
.D =
0, D —u:on (apl _— D ...(10)

This equation gives us the substitution effect of the fall in price of Q,
On the other hand, if price of Q, only changes while price of Q, and income remaining the
same, we get the price effect. In this case, dp, =0and dy = 0.

Then from (7), we get, oq, = AD.,0p, quéplD“

or, %=ﬂ+ql—D“ ..(11)
op, D D

Now combining (9), (10) and (11) we get,

od, (6% ] (Sql ]

—L= =L —q,| —= ..(12)

apl apl U =constant ' 6y prices=constant

This equation is known as Slutsky equation. The L.H.S. of this eugation represents price
effect. The first term of the R.H.S. represents the substitution effect while the second term
represents the income effect. Thus, the Slutsky equation shows that the price effect is the
resultant of the substitution effect and the income effect.

We now consider the direction of these effects. WWe know that our second order condition
of utility maximisation requires that D > 0. Further, Lagrange multiplier,

T ADy
A =MU_ >0. Now, the substitution effect = D -

f22 _pz

But D,, =
Tolp, 0

=—p5 < 0. Thus, the substitution effect as always is negative as A
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: 0 D
>0, D > 0. The income effect = - ql(i = ql%_
Eonstant
f12 —P,| _
Now, D, = B = (—p2f12 + p1f22) S 0.
22 2

Thus the sign of income effect is indetermenate. Income effect with respect to price is
negative for anormal good but positive for an interior good. Thus, if Q, isa normal good,
both the substitution effect and the income effect in equation (12) have negative signs so that,

% < 0, and the demand curve is downward sloping. But in the case of inferior goods, the

P
first termon the R.H.S. of equation (12) is negative while the second term is positive. Hence,

% may be positive or negative. If the second term is positive and stronger than the first

1

term, % > 0 and the demand curve is upward rising. This is the case of Giffen goods where
Py
the income effect is negative and stronger than the substitution effect.

In the similar manner, we can analyse the effect of change in p, on Q, fromequation (8).
5.11.2 L eontief Static Open Model

Wasilly Leontief has done an input-output analysis which shows interdependence among
different sectors of an economy. We know that output of one sector goes to the other sector
as input. Hence, there should be a balance of demand and supply made by different industries.
Leontief has shown this in terms of a model. Here we shall consider Leontief static open
model (LSOM). Astatic model is concerned with the determination of output at a particular
period of time. Again, in an open model, some of the relevant variables are exogeneous while
others are endogeneous. Our simplified model is based on the following assumptions:

(1) There are two industries or sectors in the economy. The product of one industry is used
as input in the production of other, i.e., there is interdependence between them.

(2) Total demand for each product is equal to its gross output or supply.

(3) Total demand for each product has to components : intermediate demand and final
demand.
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(4) There is only one factor of production, labour.

(5) Input co-efficients are technologically fixed.

(6) Each sector produces only one commodity and there is no joint product.

In the model, we use the following notations :

X; = output inthe jthsector (j=1, 2)

X;; = part of output of the i-th secotr used as input in the j-th sector (i, j =1, 2).
C= consumption demand or final demand for the j-th product (j= 1, 2).

L =supply of labour (only primary factor)

X

8; = U = input coefficient representing the amount of i-th commodity required as input for
X.
J

unit production of the j-th commaodity.

L.
ay = YJ: labour coefficient representing the amount of labour required to produce one
j
unit of the j-th commodity.
Let us discuss the Leontief open static model (LSOM). Using supply-demand equality for
sector 1, we get,

X, =X+ X,+Cor X =a,X, +a,X,+C, (1)
Similarly, for sector 2,

X, =X, + X, +C,0r X, =2, X, +3,,X,+C, (2)

For equilibriumin the labour market, supply of labour = demand for labour,
ie,L=L +L,

or,L=a,L, +aylL, (3

We may write equation (1) and (2) in matrix-vector form,
sl e

X2 a21 a22 ><2 C2
Using matrix-vector notations : X =AX + C.

10
or, (I-FA)X =Cwhere | = 0 1

1
or, X=(I-A)L.C,or, X = m JAdj.(1-A).C
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So, to get X, we have to find out (1 -A)L.
We first determine [ - A|.

10 10
01 ~lo 1
S=-Al=(1-a,)(1-a,,)-a,a,, = A(say). We assume A # 0.
Now, Adj (I-A) = Transpose of matrix of cofactors of (1 - A)

1- ap ay }
a;, 1- G

1- ay —a;
—ay 1- g,

all a12
a21 a22

a11 a12
a21 a22

I|—AI=‘

Matrix of cofactors of (1 -A) = {

)
a a 1-a a
- Adj(1 - A) S { = }

a, 1 ay 8 1l-a,

1 .
Now, X = m JAdj(1-A).C

or X1 _l 1_a22 a, Cl
"IX,| Al a, 1-a,|C,
1 1
SoX = Z[(l -a,,) C, +a,CJ,and X, = Z[aﬂCl +(1-a,,)C,]
Total demand for labour = a, X, +a,,X, = L = Labour supply.

017N
HAWKINS-SIMON CONDITION

In Leontief open static model, we have, X = (1-A)™C

1 .
or,X= m .Adj.(1-A).C.

So, to have positive output, || —A| = A(say) must be positive,

e, A=(1-a;,)(1-a,)-a,a,>0and(l-a,)>0,(1-a,)>0.

Al these are known as Hawkins-Simon condition. Let us see the economic implication of
these conditions. One conditionis: 1-a,, >0, or, a;, <1. It implies that the amount of first
commaodity required to produce one unit of the first commodity should be less than one.
Otherwise there will be no justification of production. Same interpretation may be given for (1
—a,,) > 0. Let us consider the third contion: (1-a,,)(1-a,,) >a,,a,,0r, (1-a,,) >a,,a,,
or,a,;, +a,,a,, <1. Now, a,,.a,, is the indirect requirement of the first commodity for unit
production of the first commodity. The condition
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(a,; +a,,a;,) <1 then states that the direct (a ;) and indirect requirements of the first
commaodity for unit production of the first commodity should be less than one unit of that
commodity. Otherwise there is no logic or justification of production.

Example5.5: An economy uses coal and steel to produce coal and steel. Suppose, 0.4
tonne of steel 0.7 tonne of coal are required to produce on tonne of steel. Similarly, 0.1 tonne
of steel and 0.6 tonne of coal are required to produce one tonne of coal. Is the system viable?

Again, 2 and 5 labour days are needed to produce one unit of coal and steel respectively.
If the economy requires 100 tonnes of coal and 50 tonnes of steel for consumption, calculate
gross output and required labour.
Solution : We denote steel industry as sector 1 and coal industry as sector 2 and summarise
the given infomation below. We also denote output levels of steel and coal as X, and X,
respectively and their final consumptions as C, and C, respectively.

Steel Coal | Final demand
Steel | 0.4(a,,) | 0.1(a,,) 50(C,)
Coal |0.7(a,) | 0.6(a,,) | 100(C,)

Labour | 5(a,) | 2(ag) -

Applying the equality condition between supply and demand, we get,
X, =a X +a,X,+C, .(1)

11771 12772
X,=a, X, +a,,X, +C, ..(2)
L =2a,X; +3,,%, (3

Equations (1) and (2) can be written in matrix formas :

el el BeHes el
X,| la, a,|[X, | [C,|%[x,| [07 06]X,| |C,
orX=AX+Cor, (I-A)X=C

L X=(1-A)'C

1 .
or, X = mAdj. (1-A).C

10 04 0.1
Here, | = 0 1 and A= 07 06
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1 0] 04 01] [06 -01
S(=A=1y 17107 06|~ |-07 04

06 O
07 04|~ 0.24-0.07=0.17

Here (i) the diagonal elements of || — A| are all positive.

(if) The determinant || — A is positive. So the system is viable.

Let us solve the system for X, X, and L. To do that, we have to determine (I - A)=L. For
that, we first determine cofactor matrix of (1 - A)

04 0.7
0.1 0.6

Further, || - A| =

The cofactor matrix of (1 -A) = {

0.4 0.1}

Now, Adj.(I —A) = transpose of cofactor matrix of (I -A) = { 0.7 06

Now, X = (I-A)'C or, X = .Adj(1-A).C

1

[1-A|

or {xl}i{m 0.1}{50}
X,| 0.17[0.7 0.6 /100

30
(04><50+01><100)——:176.5

Xy = 0.17 0.17
X, = =-5(0.7x50 + 0.6 x 100 —£—5588
0.17 ( )= 017 =%
Total demand for labour =L =a,, X, +a,,X, =5 % 176.5+ 2 x 558.8 = 2,000 (approx)

5.11.3 Cramer’s Rule for Solving Problems in ISLM M odel

In the IS-LM model, the equilibrium rate of interest (r) and the equilibrium level of income(Y)
are simultaneously determined by intersection point between IS and LM curves. The IS curve
is the investment-saving (I-S) equality curve. In the simple case, we assume that I = 1(r) such
that I'(r) <Oand S = S(Y) such that 0 < S'(Y) < 1. So the equation of the IS curve is : I(r) =
S(Y), or, I(r) = S(Y) = 0. On the other hand, the LM curve is the curve representing the
equality between money demand (L) and money supply (M). Money demand has two
components : demand for active balance or transaction-precautionary demand for money
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(L,) and demand for idle balance or speculative demand for money (L,). It is assumed that L,
=L,(Y)suchthat Li(Y)>0and L, =L,(r) such that L’,(r) <0. Money supply is assumed to
be autonomously given at M,,. So, the equation ofthe LM curveis: L, + L, =M, or L(r) +
L,(Y) =M,. Thus, we get a system of two simultaneous equations involving two unknowns :
rand Y. The equations are :

I(n-S(Y)=0

L,(n+L,(Y)=M,

We assume that all the functions involved in the systemare linear. Now, applying Cramer’s
rule, we can easily solve the system for r and Y and thus determine the equilibrium rate of
interest and the equilibrium level of income.

Let us give an algebraic example.

Suppose, our investment function is : I(r) = o.— ir and the saving functionis: S(Y)=-a+
sY. Putting I(r) = S(Y), we get, a —ir=—a+sY [(a, |, &, S) > 0]

or, ir + sy =a + o = Awhere A= a + o = total autonomous expenditure. This is our IS
curve.

Let us consider the equation of the LM curve.

Let the demand for active balance be, L, =1,'Y and the demand for idle balance be, L, =
M, - Lr. Now, putting L, + L, = M, (given money supply), we get,

M, = Lr+1Y= M, (Herel, 1,, M,, M,>0 and M, > M,)

o, Lr=1,Y =M, =M, =~ (M, - M,) =-M(say) where M, — M, is denoted by M.

Thus, we have two simultaneous linear equations in two unknowns. They are :

ir+syY=A
Lr-1Y=-M
Now applying Cramer’s rule, we can solve them for rand Y.
‘ A s i A ‘
-M -l —Al, +sM I, M| —ij
r=>1_ 1 — : 1 and Y = 2 _ |M +A|2
I s —il, —sl, I s —il, —sl,
|2 _I1 |2 _I1

Alternatively, we may solve the system by matrix-inversion method. In matrix-vector form,
I s |r A
the system can be written as : LZ —Ij {Y} = {—M}
Using symbols, BX=C .. X=B1.C
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Let us solve the system by Cramer’s rule. We give a numerical example.

Example5.6 : Suppose we have,
S=-90+0.375Y
I =150 - 100r
L, =0.25Y,
L, =50 - 200r
M, =180

Determine the equilibrium rate of interest and the equilibrium level of income.

Solution : Putting I =S, we get, 150 — 100r =-90 + 0.375Y
or, 100r + 0.375Y =240. This is our IS curve.
Let us deduce the LM curve. On the LM curve, L=M
or,L,+L,=M
So, 0.25Y + 50 -200r =180
or, 200r —0.25Y =-130. This is our LM curve.
Thus, we have,
100r +0.375Y =240 ... (IS curve)
200r-0.25Y =-130 ... (LM curve)

240 0.375
~130 -0.25 240x-0.25+130x0.375

By Cramer’s rule, r = ‘ 100 0_375‘ = 100x—0.25-200x0.375 ~

~200 —-0.25
_ S 105 = 11.95%
= _100 - V. = . 0

‘100 240

200 —130‘ _100x-130-200x240 13,000 48,000 61,000

60 48.75

25 75

=610

“]100 0.375] —25-75 100
200 -0.25

100
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5.12Summary

1. Definition and Concept of aMatrix

Any rectangular array of numbers is called a matrix. Amatrix with a single row is called a row
matrix or arow vector. Similarly, a matrix with single column is called a column matrix or a
column vector. There are some specific rules for the operations of matrices, i.e., for addition,
subtraction, multiplication, etc.

2. Different Typesof Matrices

Some of the major types of matrices are : column matrix, row matrix, transposed matrix,
square matrix, symmetric matrix, diagonal matrix, identity or unit matrix, orthogonal matrix,
idempotent matrix, etc.

3. Determinant of aMatrix and itsAssociated Concepts

A determinant is simply described as a square array of numbers. It is so called as it isused in
the determination of the solution of a system of simultaneous equations. To every square
matrix, there corresponds a number known as the determinant of that matrix. Some associated
concepts used to make operations with determinants are : principal diagonal, minor, cofactor,
etc. There are some properties of determinants which are very helpful especially for evaluating
determinants.

4. Inverseof aMatrix

Asquare matrix Awith |A| = 0 is called a non-singular matrix. Anon-singular matrix has a
corresponding inverse matrix. The concept of inverse matrix is useful to solve a system of
linear simultaneous equations. An alternative method of solving a system of linear equations is
Cramer’s rule method.

5. Applicationsof Matrix and Deter minant Operationsin Economics

In Economics, there are numerous applications of matrices and determinants. In fact, inany
economic or econometric model, whenever we use some simultaneous equations and/or some
notations, use of matrices and determinants is very much helpful to deal with them. In the
present unit, we have considered three applications of matrix and determinant operations,
namely, derivation of Slutsky equation, Leontief static open model (LSOM) and solution of
IS-LM model.



NSOU e PGEC-IV 391

5.13Excercises

Short Answer Type Questions

Define matrix.

What is column matrix and what is row matrix?
What is column vector and what is row vector?
What is a square matrix?

What is a symmetric matrix?

Define a diagonal matrix.

What is an identity matrix?

Define a unit matrix.

© © N o gk~ DR

What is null matrix?

10. What is an idempotent matrix?

11. What is a determinant?

12. What is principal diagonal of a determinant?

13. What is minor in the context of a determinant?

14. What is cofactor in relation to a determinant?

15. In the context of Leontief input-output analysis, what is a static model?
16. Why is Leontief static open model called “open’?

Medium Answer Type Questions

1. Explain the concept of a matrix.

Show the addition operation of a matrix, taking a simple example.
What is transposed matrix? Give example.

Prove that (AB)' = B'A’

Ilustrate the concept of a square matrix.

Explain the concept of symmetric matrix.

Ilustrate the concept of diagonal matrix.

Briefly explain the concept of identity matrix.

Explain the concepts of minor and cofactor of a determinant.

. Briefly discuss the implications of Hawking-Simon condition in the context of Leontief
static open model (LSOM).

© 0N WD

[EY
o
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11. Distinguish between a matrix and a determinant.

2 3
12. Find Adj. Aof the matrix A= { }

4 5
13. Taking any two matrices of order (2 x 2), show that AB = BA.
2 3| .
14 1fA= 4 -11 , find AL,

15.2x + 5y = 24 and 3x + 8y = 38. Solve by matrix inversion method.
Long Answer Type Questions
1. Explainwith a suitable example the multiplication of two matrices.
2. Show witha suitable example that transpose of transpose of a matrix is the original matrix.
Also prove that (A+B)' =A’'+B',
3. State the major properties of a determinant.
Write a short note on expansion of a determinant.
5. Explain how can you find out the inverse of a matrix. Show how the matrix inversion
method can be used to solve a system of simultaneous equations.
6. Briefly explainthe Cramer’s rule method to solve a system of simultaneous equations
involving two variables.
7. Write ashort note on Hessian determinant and Bordered Hessian determinant.
8. What is Slutsky equation? Derive the equation and interprete its various terms.
9. Briefly discuss the Leontief static open model stating clearly its assumptions.
10. Explain how Cramer’s rule may be used to solve for the variables in an IS-LM model.
11. Solve the following system by matrix inversion method :
X+y+z=3
X+2y+3z=4
X+4y+9z2=6
12. Solve the following system by Cramer’s rule method :
2X-y+22=6
X-2y+32=6
3X-3y-z=-6
13. Solve the matrix equation AX = B where
1 2 -1 X 3
A=[3 -1 2| x=|Y|,B=|2
2 -2 3 z 1

>
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14. Calculate output in the two sectors on the basis of following data to meet final demand of
200 and 800 units of Agriculture and industry, respectively.

Purchasing sector
Sectors Agriculture Industry Current demand
Agriculture 300 600 100
Industry 400 1,200 400

15. Find total output for each industry if the new final demands are 180 and 440 units

respectively
Input to
Industry Industry 1 Industry 2 Final demand
1 160 200 40
2 80 400 320

16. Our equations in commodity and money markets, respectively are :
200r +0.36Y =380
200r —0.40Y =-380
Determine equilibriumrand Y both by matrix inversion method and Cramer’s rule method.
17. The IS-LM model is :
SY)=I(rnN+G
L (Y)+L, (=M

Fing &Y. dr dv. . dr
NG dc’ am M

18.Solve the national income model :
Y=C+I,+Gyand C=a+bY
using Cramer’s rule and also by matrix-inversion method.
19. Consider the following model.
C=a+hy
I=d+eY
Y=C+I
Solve for the endogeneous variables using matrix formand also using Cramer’s rule.
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20.C=0.75Y + 2,000, I =0.15Y + 3,000

Determine the equilibrium level of income both by Cramer’s rule and by matrix inversion
method.
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6.1 Objectives

After studying the unit, the reader will be able to know
e First and second order difference equations and their solutions
e Application of difference equations in Economics
e Solution of a first order differential equation
e Application of differential equation in Economics

5.2 Introduction

There are two basic approaches to examine the course of a system of economic variables
through time. One is the static analysis and the other is the dynamic analysis. In the
static analysis, all the variables involved refer to the same point of time or the same
period of time. A variant of the static analysis is known as comparative static analysis in
which we compare the values of relevant variables in two or more static situations.
Thus, comparative static analysis is also basically a static analysis. On the other hand, if
the economic variables involved refer to different points of time or, different periods of
time, then the analysis is called dynamic analysis. In static analysis, all the variables
involved refer to the same period of time. Further, the time element is not considered in
the process of determining the equilibrium values of the variables. Static analysis
considers the determination of an equilibrium position. It is not concerned with the time
required to achieve that equilibrium position. It does not also consider the path by which
the variables approach their equilibrium values. All these are considered in dynamic
analysis. In this analysis, all the variables are dated. Hence we can know the time path
of an economic variable in this case.

For example, suppose we assume that demand for any commodity in any period of
time is a function of current price while its supply depends on the price of the previous
period i.e., D, = D(p,) while S, = S(p, ,) and it represents a dynamic relationship since it
shows a relation between prices in two successive periods of time. Such an equation is
called a difference equation. Solving it we can get the time path of price (p). The time
path of p represents the path along which price movement will take place over a period
of time. Thus, from the dynamic analysis, we can know the pattern of movement of an
economic variable from one equilibrium situation to another.

In particular, dynamic analysis is necessary for three reasons. First, adjustment of
one variable to bring change in other takes time. Hence there are lags in many functions.
The presence of these lags necessitates the use of dynamic analysis. Secondly, there are
certain variables which depend, among other things, on the rate of change of some other
variables. For example, demand for any commodity may depend on the rate of change
of price of that commodity. Such problems involving rates of growth requires dynamic
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analysis. Thirdly, dynamic analysis is also necessary for considering the stability of
equilibrium. An equilibrium is said to be stable if, after some disturbance or change, it
reaches to an equilibrium position. Whether the system moves towards equilibrium or
not, depends on the time path of relevant variable. And this time path can only be
determined from dynamic analysis.

6.3 Use of Difference Equation

We have mentioned that in dynamic analysis, the variables involved refer to different
points of time, or different periods of time. A dynamic model is concerned with the
change in relevant variables over time. This model can be formulated in two alternative
ways : in period terms or in continuous terms. In period analysis, the flow of time is
divided into successive discrete periods of finite constant length taken as units of time.
For example, a variable price is written as p, for periods t = 0, 1, 2, 3, etc. In this case,
various relations and conditions of a dynamic model are expressed in terms of difference
equations. On the other hand, in continuous analysis, time flows continuously in an
endless manner. Each variable is then taken as a continuous and differentiable function
of time. Naturally, in continuous analysis, a dynamic model uses differntial equations,
rather than a difference equation. The choice of the specific analysis is mainly a matter
of mathematical convenience. We shall consider the solution of difference equation
which takes time as a discrete variable. We shall first illustrate the solution of a first
order diffence equation, and then the solution of a second order difference equation.
After that, we shall consider the solution of a differential equation which considers
time as a continuous variable.

6.3.1 Solution of a First Order Difference Equation

The general form of a linear non-homogeneous difference equation of n-th order is :

a Y, taY  +aY +..+aY +C=0

If C=0, it is called linear homogeneous difference equation of order n. The form of
a first order linear non-homogeneous difference equation is :

a,Y,+a Y  +C=0

We shall consider its solution. We shall first follow the general method and then a
relatively rudimentary method, called iterative method. The solution of such an equation

has two parts : general solution = homogeneous solution and particular solution, i.e., Y,

=Y +Y,
Let the simple form of the difference equation be,
Y, taY,=C

For homogeneous solution, we consider the homogeneous part i.e., we take, C = 0.
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The homogeneous solution is also called complementary solution (Y ). Then,

Y, taY,=0.

LetY, = Hbt be the complementary solution. Then putting

Y, = Hb', we get, Hbt*! + aHb'= 0

or, b1 +ab'=0, (H=0). Thenb+a=0, (bt 0)

Then,b=-a

So, the complementary solution is : Y, = Hb' = H(-a)".

We now consider the particular solutlon, Y,

Let Y, = K(a constant) be the particular solution. As K is a constant, Y = K will hold
for all t.

C
Y, taY,=C.. K+aK=Cor,K=——
* 1+a

Then, our particular solutionis :Y = C , (@=#-1).
 1+a
Now, the general solution is :
C
Y, =Y Y, = H(-a)! + Toa’ (a=-1)

The value of H is to be determined from the initial condition, i.e., by puttingt =0

Then we have, Y, = H+L . H:YO—L
l+a l+a

Thus our final solution is, Y, = H(-a)' +L
l+a

or,Y,= [Y ——}(— a)t+ L , (a=-1)

If a = -1, then we shall try the partlcular solution, Y, = Kt, instead of Y, = K.

ThenY, +aY, =C
K(t+1)+aKt—C

“Kt+K+aKt=C

or, K=Casa=-1

So, Y, = Ct is our particular solution.
Then our final solutionis : Y, =Y_ + Yp

or, Y, =H(-a)' + C.t where the value of H is to be determined from the initial condition,

I.e., puttingt =0. Then, Y, = H
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So, Yt = Y0 + Ct
This is our total solution in the case of a = —1.

Example6.1: Solve Y, =2Y, , +3

Solution : This is a first order non-homogeneous difference equation. Its total solution is :

Y =Y +Y,

For solution of the homogeneous part, we take, Y, = 2Y ,.

Let Y, = Hb'be a solution. Then Hb' = 2Hb**

s b=2. So, Y. =Hb=H2

Now we consider the particular solution.

Let Y, = K be the particular solution. Then it will hold for all t, i.e., Y, =Y _, =K.

Now we have, Y, =2Y _ +3

S K=2K+3 or, K=-3

So, Y, = =3 is the particular solution.

Hence, general solution, Y, = H2! — 3 where the value of H is to be determined from
the initial condition.

Puttingt=0,Y,=H-3 .. H=Y +3

So the final solutionis : Y, = [Y  + 3]2! -3

Example6.2: Solve Y, =Y, + 1whenY, =10

Solution : W first consider the solution of the homogeneous part, i.e., Y ,, =Y,

Let Y, = Hb"! = Hbt!

. b=1,(H=0)

So, Y,=H(1)'=H.

Thus, Y. = H is the complementary solution.

Now, we consider the particular solution, Y,

Here Y, = K(a constant) cannot be a solution.

For,thenY,,, =Y, =K. So, K=K+ lie., 1=0whichis absurd. So we try another
solution.

Let Y, = K.t be a solution,

Then, K(t+1)=Kt+1 .. K=1

Thus, our particular solution is : Y, =Kt=t

So, general solutionis : Y, =Y_ + Y,=H+t

where the value of H is to be determined from the initial condition (i.e., by putting t = 0)

- Y,=H
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So, our solution is : Y, = Y, + t. But it is given that
Y, =10

.Y, =10 + tis our solution.

In our figure 6.1, we have drawn the time path of Y. It is
an upward rising straight line with a slope equal to 1(= tan
45°) and a positive vertical intercept equal to 10 when plotted
against t.

Example6.3.: GivenY,,, = aY,— B. Find the time path
of Y.

Solution : We first consider the complementary solution: Y, =a Y

Let Y, = Hb' be a solution.

Then Hb*! = gHbt .. b=a, (b'# 0, H = 0)

So, Y, = Hb'is our solution for the homogeneous part, i.e., Y, = Ha".

Let us consider particular solution (Y ).

Let Y, = K (a constant) be the particular solution.

As K is a constant, it holds for all t.

Now, Y,,, =aY,-B

(Fig. 6.1)

t

Dk S
nK=0K-p o K=-r

B

So, general solution, Y, =Y. +Y_or, Y, = Ha' o
-
The value of H is to be determined from the initial condition, i.e., by putting t = 0.

Then, Y0 =H —i
1-a

SH=EY 1i Putting this value of H, we get final solution,
-

Y:[Yo+ B }a‘— B

t 1-a 1-a

This is our time path of .
SOLUTION OF DIFFERENCE EQUATION BY ITERATIVE METHOD

Afirst order difference equation describes the pattern of change of a variable Y between
two consecutive periods only. So, once such pattern is specified and once we are given
the initial value Y, We can find Y, from the equation. Now, once Y/ is known, we can
determine Y, from the given pattern of equation just by putting the expression of Y, and
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so on. Thus, we can get the value of Y for any time period (t) just by repeated application
(iteration) of the pattern of change specified in the difference equation. Hence the method
is known as iterative method.

Example 6.4 : We take the example 6.1 considered in general method.

Solve Y, = 2Y,, + 3 by iterative method.
Solution : We have, Y, =2Y _ +3

Puttingt=1,Y,=2Y,+3

Now, putting t = 2, we get,

Y,=2Y,+3=2(2Y,+3)+3=22Y +223-3=2%Y,+3)-3

Whent=3,Y,=2Y,+3=2[2%(Y,+3)-3] +3=23%Y,+3)-2x3+3

=25(Y,+3)-3

Proceeding in this manner, we get, Y, = (Y, + 3)2' - 3.

This is our time path of Y. We got the same result in example 6.1 by following the
general method.

Example 6.4. : Solve Y,,, = Y, +1 by iterative method when 'Y, = 10.

Solution : We have : Y., =Y +1. From this, we can write, Y, =Y, +1
Now, puttingt=1, 2, 3, ..., we get,
Ift=1,Y,=Y,+1
Ift=2,Y,=Y, +1=(Y,+1)+1=Y +2
Ift=3,Y,=Y,+1=(Y,+2)+1=Y +3
Thus, we get, Y, =Y, +t. Given that Y = 10. So, our time pathis : Y, = 10 + t, the
same result obtained in example 6.2. through general method.

Example 6.5 : Solve the difference equation Y,,, = 0.5 Y, by iterative method.

Solution : We have, Y,,, =0.5Y,. Thisis a first order homogeneous difference equation.
Now puttingt =0, 1, 2, 3, ... etc. we get,

Y,=05Y,

Y,=05Y,=(0.52Y,

Y,=05Y,=05(0.5)Y,=(0.53Y,

Thus, we get, Y, =Y (0.5)". This is our desired solution.

Example6.6: Given I, =v(Y,-Y, ) and S, =sY,_,. Determine the equilibrium growth
path of Y (income) where | = investment and S = saving.

Solution : In equilibrium, I, =S, or, v(Y, =Y, ) =sY,
or, v¥,=vY,_ +sY _ = (v+9s)Y,,

S
S Y= (1+;j Yi.. This is a first order homogeneous difference equation in Y. The
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solution of this equation will give us the time path of Y (income).
We have, Y, = (1 +s/v)Y,
Ift=1,weget, Y, =(1+s/V)Y,
Ift=2,weget,Y,=(1+s/V)Y, = (L +sV)(L+slv)Y,=(1+s/V)?Y,
Ift=3, weget, Y,=(1+s/V)Y,=(L+s/V)(L+s/v)2Y,=(1+slv)}Y,
Proceeding in this manner, we finally get, Y, = Y (1 + s/v)L.
This is our time path of Y. We may do the same thing in an alternative manner.
Whent=1,Y, =(1+s/V)Y,
Whent=2,Y,=(1+s/v)Y,
Whent=3,Y,=(1+s/V)Y,
Puttingt, Y, = (1 +s/v) Y, ,

t
S
Multiplying both sides, we get, Y,.Y,.Y, .Y, = (1+ ;) Y. Y, Y,L Y, . Cancelling

t
s
Y. Y, ... Y, fromboth sides, we get, Y, = Y0(1+—) . This is our time path of Y.
A%

1!

Yt — Yt—l
The rate of growthof Y = Y

t-1

Yo @+s/v) =Y (@+s/v)
Y,(L+s/v)™

s/v

Yo(L+s/v)(L+s/v-1)
- Y,(1+s/v)™
We may get the same result from our equilibrium condition, I, = S,
or, v(Y,= Y, ) =s.Y,,
(Yt — Yt—l)

or, Y - s/vi.e., the rate of growth of Y = s/v.

t-1
When a sum p grows by the rate r, the amount after t years is : A= p(1 + r)t. Hence,
t
S s o
when Y rises by the rate o the value of Y after t years =Y, = Y0(1+ ;) which is our

time path of Y. [In our example, equations have been taken from Harrod’s model of
S
economic growth. There, 5 is called the warranted rate of growth]

6.3.2 Dynamic Stability of Equilibrium

The equilibrium is dynamically stable if the complementary function tends to zero ast — o.
Now, in a first order difference equation, the complementary solution is : Y_ = Hb'. We

first consider the significance of b, ignoring the coefficient H(by assuming H = 1). For
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analytical purpose, we can divide the range of possible values of b into 7 regions.

Region| Value of Value of Value of bt in different time periods
b bt t=0 t=1 t=2 t=3 t=4

I b>1(b>1),e.g., 2 1 2 4 8 16
N | b=1(b=1),ie., 1t 1 1 1 1 1
M |o<b<1(b<1 (ET , £ 1 11
(bl <1), e.9., | 5 T

IV [ b=0(|b|=0), e.g., (O) 0 0 0 0 0
\Y/ 1<b<0(b <1 (—ljt 1 1 L E
- (bl <1), e.9. | T

VI [ b=-1(]b|=1)ie. (1) 0 -1 1 -1 1
VIl | b<-1(b|>1)e.g., (-2)! 1 -2 4 -8 16

The time path corresponding to different values of b are shown below :

bt
A
t
b ;
b>1 b=1
. 1
01534 X ol 1 234 t
Q) (1) (1)
bt bt
t 4 A
b 1
_1<b<0 . b=-1
- L, T,
| = S 0 I_I I 0 |_| t
0 t
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[]
—

(VII)

The essence of these figures can be summed up in the following statement :

The time path of b* will be non-oscillatory if b > 0 and oscillatory if b < 0. On the
other hand, it will be divergent if |b| > 1 and convergent if |b| < 1.

We give some examples.

t
Example 6.7 : What kind of time path is represented by Y, = 2(—%) +97?
Solution : Ift =0, Y,=9. This is the equilibrium level of Y. Since b = —% <0, the time

4
path of Y is oscillatory. But since |b| = §< 1, the oscillation is damped, and the time

path converges to the equilibrium level of 9.
Example 6.8 : Examine the nature of time path of Y, = 3(2)" + 4?

Solution : At t =0, Y, = 4 = initial or equiliorium value of Y. Since b =2 > 0, no
oscillation will occur. But since |b| =2 > 1, the time path will diverge from the equilibrium
level of 4.

6.3.3 Solution of a Second Order Difference Equation

We shall consider the solution of a second order difference equation with constant term
and constant coefficients. The second order non-homogeneous difference equation is :
aY,+ by,  +cY ,+d=0

We first consider the solution of the homogeneous part, i.e., complementary solution
(Y,). Then our equation is :

aY, + by, +cY, ,=0

Let Y, = X" be a solution.



NSOU e PGEC-1V 405

Then, axt + bxt1 + cxt2 =0

oo ax? + bx + ¢ =0 (assuming x2 = Q)

Let us solve this equation. Multiplying both sides by 4a,
we get, 4a°x? + 4abx + 4ac =0

or, (2ax)? + 2.2ax .b + b>-b?+4ac =0

or, (2ax + b)? = b? — 4ac

or, 2ax + b = +\/p? —4ac
_ —b++/b*-4ac

2a

X

b++/b* - 4ac
2a
So, the solutions are x;and x;. In this case, Y, = K,x; + K,X; is the solution. The

values of K, and K, are to be determined from initial conditions. Two initial conditions
are needed in the second-order case. Let, whent =0, Y = Y, andwhent=1,Y=Y..

Then, K.x; +K, X5 =Y, , i.e,, K + K, =Y, (given).
As x, and x, are already known, we can solve for K, and K,. Thus, the complementary

Thus the roots of our quadratic equation are : (x,, X,) = —

solutionis : Y, = K x; + K, x, where x, and x, are the two roots of the quadratic,

b++/b?—4ac
2a '
If b2 —4ac > 0, or, b2 > 4ac, roots will be real. If b2 < 4ac, or, b? — 4ac < 0, roots will

be complex. Then the solution involves the trigonometric functions sine and cosine.
We here just state the solutions. We introduce the following notations :

b b? —4ac
V1:_2_a and v, =— oa ’R:m

Then we have to find the angle z, the sine of which is —Y2_ and the cosine of

2 2
A V.V,

ax+bx+c=0ie, (X, X,) = —

(2!

2 2
V1+V2

which is

Then the solution is ;
Y, = R'[w, sin(tz) + w, cos(tz)]
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where w, and w,, are constants to be determined from the two initial conditions (i.e., for
t=0andt=1).

Let us consider the particular solution (Y ).

Let Y, = K (constant) be a solution. So, aK + bK + cK +d =0

d .
K= Taibic provided (a+ b +c) = 0.

Then the general solution or the complete solution is,

_ t t
Y, = K X, + KX, +

T provided (a+ b +c) = 0.

If (@a+b+c)=0, weassume Y, = Kt as the solution.

ThenaKt + bK(t-1) +cK(t-2)+d=0

or, aKt + bKt + cKt —bK - 2cK+d =0

or, Kta+b+c)-bK-2cK+d=0

or, K(-b-2c)=-d(asa+b+c=0)

-b-2c

Then the solution is, Y, = K x; + K,x; +Kt, provided (b — 2c) = 0.

If (-b—2c) = 0, we should take Y, = Kt? as the particular solution and proceed in the
same manner. In the first order case, we see that either Y, = K or, Y, = Kt leads to correct

particular solution. In the second order case, either Y, = K, or Y, = Kt, or Y, = Kt2 leads
to the correct particular solution.

K= , provided (-b — 2c) = 0.

6.4 Differential Equation

We know that in static analysis, time is not considered as a separate variable. But in
dynamic analysis, time is considered as a separate variable and the change in various
variables is considered over time. Now, time may be treated as a discrete variable or as
a continuous variable. If time is taken as a discrete variable, we use difference equation
to deduce the time path of any variable. On the other hand, if time is considered as
continuous, then to deduce the time path of any variable, we use differential equation.
In a differential equation, a variable is taken as a continuously differentiable function of
time.

6.4.1 Solution of a First Order Differential Equation

We shall consider the first order linear differential equation with constant coefficient
and constant term. The general form of a first order differential equation is :
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d
d—¥+ u(t)y =w(t) where u and w are two functions of t(time), as is y. If u is a constant

and w is a constant additive term, we get a first order linear differential equation with

d
constant coefficient and constant term. Let u = a and w = b. Then we have, d_st/ +ay=D0b,

It is a first order non-homogeneous differential equation. Again, if b = 0, we have,
(3—3:+ay =0. Then the function is homogeneous and if b = 0, the function is said to be

non-homogeneous.
Solution in homogeneous case

The equation of a linear homogeneous differential equation is : 2—3:+ay =0.

We shall consider the solution of this equation, or, more specifically, we shall try to
derive the time path of y.

1
From the above equation, we can write, 2_)'[/ =-ay, or —2—3: =-a
y

Integrating we get, jd—y - —aj dt
y

or, log,y = —at + ¢ where ¢ = constant of integration.

y = e—at+C = ec_e—at

or,y =H e?where H = e¢.

Thus, y(t) = H e=? is the general solution of the given differential equation. The
value of H is to be determined from initial condition i.e., by putting t = 0. Then y(0) =
H. Thus, the definite solution is : y(t) = y(0)e=.

Two things should be noted about the solution of a differential equation :

(i) The solution is not a numerical value here, but a function of t. If t is time, we get
a time path.

(i) The solution y(t) is free of any derivative or differential expression. Hence, as
soon as a specific value of t is substituted into it, a corresponding value of y can be
calculated directly.
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Solution in non-homogeneous case

d
The general form of a non-homogeneous linear differential equation is : d—¥+ay =b,

Here the general solution will have two parts :
(i) Homogeneous solution or complementary solution (y,)
(i) Particular solution (yp)

e, yt)=y + Yy
For the homogeneous solution, we take the equation in homogeneous form :

d—y+ay:0

dt
Then we have seen that the homogeneous solution is : y. = H e
Let us consider particular solution. For particular solution, we assume, y = k,

d
(k = constant). Then d_)t/ =0

b
So,0+ay=b,or,ak=b .. k:g.Thus,yp: g,(a;tO).

Thus, the general solution or complete solution is :

b
yO) =y, +y,=He+—,(a=0).
The value of H is to be determined from the initial condition, i.e., by putting t = 0.
b
Then, y(0) =H + 5 Oon H=y(0) - b
a

Hence the definite or final solution is :

y(t) = [y(o) —ﬂe‘a‘ +2, (a=0).

d
Example6.9: Given d_)t/+ 2y =6 with the initial condition y(0) = 10. Solve the equation

or deduce the time path of y.

Solution : Here a = 2, b = 6 in the equation, 2—3:+ay =Db.

. . b| b
In this case, the solution is, y(t) = Y(O)—g et
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Putting the value in this formula, we get, y(t) = [10 —g} e’ +g

or, y(t) =72+ 3 (Ans.)
Solution without for mula

Our given differential equation is : 2—¥+ 2y =6

It is a first order non-homogeneous difference equation. First we consider the solution
of the homogeneous part.

Then, d_y+ 2y =0.
dt

d d
or, Yoy , of, 7y = —2dt

dt

Integrating, we get, logy = -2t + ¢ where ¢ = constant

0r1 y - e—2t+C - eC.e—Zt

-y =He? where H = ec. This is the solution for the homogenous part (y,).
We now consider the particular solution, y.

: . d
Let y = k, a constant, be the particular solution. Then d_st/ =0.

d
So, from the given equation, d_)t/+ 2y=6 weget,0+2y=6..y=3,0r,k=3.

This is our particular solution (yp) ie., y, = 3.

So, general solution, y(t) =y_+ y,= He=2t + 3 where the value of H is to be determined
from the intial condition i.e., by putting t = 0.

S y(0)=He’+3=H+3 .. H=y(0)-3

We are given that y(0) =10. .. H=y(0)-3=10-3=7

Hence the final solution is : y(t) = 7+ 3 (Ans)

d
Example 6.10 : Solve the equation d_)t/+ 4y =0 with the initial condition y(0) = 1.

d
Solution : For a linear homogeneous differential equation d—¥+ay =0, the solution is
Ly(t) = y(0)e=
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Here, in our given problem, a = 4 and y(0) = 1.
Putting these values in our formula, we get, y(t) = 1.e* or, y(t) = e (Ans.)

Solution without applying formula

dy dy
X —_4gqy - <L =-4dt
We have, at y .. y

Integrating, log,y = —4t + ¢ where ¢ = constant of integration

y(t) - e—4t+c

or, y(t) = e¢.e~* = He-* where H = ¢¢.

The value of H is to be determined from the initial condition, i.e., by putting t = 0.
- y(0) = He® = H.

So, H = y(0) = 1 (given in the problem).

So, y(t) = He™* = e~ is the required solution.

Example 6.11 : Solve the equation % =D

Solution : we have, % =b .. dy=bh.dt

Integrating, y(t) = bt + ¢ where c is a constant. Its value will be known from the
initial condition, i.e., t = 0.

Theny(0)=bx0+c .. c=y(0).

Therefore, the solution is : y(t) = y(0) + bt (Ans.)

Alternative method : The general form of a first order differential equation is :

d—y+ay:b_

dt

. d : ,
In our given problem, d_st/ =b .. a=0. Inthis case, the complementary solution (y)
is : y(t) = He ™,
Itt=0, y(0) = He® = H where H is an arbitrary constant.
Let us consider the particular solution, y .

d
Let y = K, a constant, be a solution. Then, d_)t/ =0,

. d : .
But we are given that d_)t/ =Db. So, we should try another particular solution.

Let y = Kt be a solution.
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Then 2—3{ =K. But we are given that ((jj_)t/ =b

. K=Dh. So, our particular solution is : y, =Kt = bt.

Hence, the general solution is : y(t) = y_+ y,=H+ bt

where the value of H is to be determined from the initial condition, i.e., by putting t = 0.
So, y(0) = H.

Hence the definite or total solution is : y(t) = y(0) + bt

d
Example 6.12 : Solve the equation d_)t/ =2 with the initial condition y(0) = 5.

Solution by formula: We know that for differential equation 2_)'[/ =b, the solution is :
y(t) = y(0) + bt (we have seen it in our previous example).

In our given problem, b = 2 and y(0) = 5.

So, the required solution is : y(t) =5 + 2t (Ans.)

[or we may follow the alternative method as shown in the preveious example].

6.5. Application of Difference Equation in Economics

Difference equation has many applications in economics. It is used to determine the
time path of an economic variable, to examine the stability of an equilibrium over time
to determine the value of a variable after some given periods, etc. In the present section,
we shall consider the application of difference equation in three particular cases :
(1) in the context of Keynesian dynamic multiplier, (ii) price stability in a cobweb model
and (iii) interaction between multiplier and accelerator as a possible explanation of the
emergence of trade cycles.
Let us consider them one by one.

6.5.1 Keynesian Dynamic Multiplier

We introduce dynamic element into the simple Keynesian model. We assume that
consumption expenditure in period t is a linear function of income of the previous
periodi.e., C,=f(Y,,). Inparticular, we assume that C =bY,, +a,0<b<1,a>0. That
is, there is one period lag in consumption function.

Investment is assumed to be autonomously given, i.e., I, = A where A > 0. The
condition of equilibrium in the commodity market is : Aggregate supply in period t =
aggregate demand in period t. We assume a closed economy with no economic activities
on the part of the government. So, aggregate demand will have two components : C,
and I,. Thus, our equilibrium conditionis : Y, = C + I..
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Hence, in our simple Keynesian model, we have the following equations :

(1)C,=a+bY,_,,0<b<1,a>0 (autonomous consumption)

(2) 1, = A (autonomous investment)

(3) Y, = C, + I (Equilibrium condition)

Putting the values of C, and I, into the equilibrium condition, we get,

Y, =bY_, +(@+A).

or, (4)Y,=bY, _, +z where z = a + A= aggregate autonomous expenditure.

Equation (4) is a first order non-homogeneous difference equation. In order to solve
this equation, we first consider the complementary solution (Y ). To do this we take the
homogeneous part : Y, = bY ,. Let Y, = Hx'be a solution for this equation. Hence, from
the homogeneous part Y, =b'Y, ,, we get, Hxt = bHxt1

s X =D, (assuming H = 0 and x** = 0).

So, Y, = Hbt is our complementary solution.

Let Y, =K, a constant, be the particular solution.

Then this value of Y will hold for all t. So, we get, putting Y. =Y, =K

Y, =bY,_, +2

z
or, K=bK+z .. K—m,(b;tl)

z
So, Y, = b is the particular solution. This is actually equilibrium value of .

Now, the general solutionis: Y, =Y_+ Y'O

or,Y,= Hbt+ — (b;tl)
The value of H is to be determined from the initial condition, i.e., by puttingt =0
z
Thenweget, Y =H+-2_ -~ H=Y ——.
g YO H+ b 0 1-b

y4
Hence, our definite solution is : Y, = Hbt + ——

1-b
or Y, =|Y, -2 |b' + -2
1-b]" 1-b

This is our time path of Y(income). Given0<b<1,ast— o, bt— 0.

So, Y, —>Lb. That is, Y, tends to the equilibrium value. Thus our equilibrium is

stable if 0 < b < 1. We have shown it in our figures 6.2 and 6.3 below. If the value of Y



NSOU e PGEC-IV 413

is less than the equilibrium value, then aggregate demand (C, + 1) > aggregate supply
I.e., there is excess demand. So, the levle of output (Y,) will rise.

C+l v

_r'f Yo

© 1-Db

450

0 Y:l y
© 1-b

(Fig. 6.2)

N

(Fig. 6.3)

If the value of Y is greater than the equilibrium value then aggregate demand (C, + 1,)
< aggregate supply i.e., there will be excess supply. So, the level of output (Y,) will fall.
Thus, our equilibrium is stable provided 0 < b < 1.

This is shown in our two figures.

Ifb=1,Y,=Y,_, +z Here, as before, Y_ =Hb'=H (asb = 1)

Let us consider particular solution. Let Y, = K be the particular solution. So, this
value will hold for all t. Hence we get, K = K + z, or, z = 0. But, we know that z = 0.
Hence, Y, = K will not be the particular solution. Hence we try another. Let Y, = Kt be
the particular solution. Then we have, Kt = K(t — 1) + z. or, K = z. So, the particular
solution, Y, =Kt=zt. Thus, total solution, Y, =Y _+ Y, =H+zt. The value of H will be
determined from the initial condition (i.e., by putting t = 0). Ift =0, H =Y. So, we
have, Y, =Y, +zt =Y + (a + A). This means that the level of income (Y) will go on
increasing by the amount of aggregate autonomous

expenditure (z =a + A) every time if b = 1. In static c +Z

1 C+11 /
multiplier, T p=-" if b = 1. Then, as autonomous z{ 5=
investment rises, Y immediately jumps to infinity. 7 >
This is absurd. This absurdity can be easily explained z =
by dynamic analysis. Here we say that whenb=1,Y a+ A[ 450 Z | Z X
does not jump to inifinity immediately. Rather, here 0 Y, Y, Y, Y
Y rises everytime by z (=a + A). So, whent— p , Y )
tends to infinity. This is shown in the figure 6.4. (Fig. 6.4)

1
Again, if b > 1, the static multiplier is negative. (E< 0]. This means that as
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C+ 14 C+l autonomous expenditure rises, equilibrium level
\ of income falls. This is again absurd. This
L~ absurdity can be removed by dynamic analysis. If
b > 1, the C + | curve is steeper than the 45° line
and the equilibrium level of income is negative.
Thus, here the equilibrium does not exist. For any
/445 positive output, aggregate demand (C, + I)) >

% Y, Y, Y, Y aggregate supply (Y,). So, the level of income ()

<]

) goes on increasing indefinitely. This is shown in
(Fig. 6.5) the figure 6.5 where we get an explosive situation.

6.5.2 Cobweb M odel
LetD,=a-Bp,S=-y+p,,, (o, B, 7, 6>0).
In equilibrium, demand = supply i.e., D, = S..
SO Bpt == + 6pt_]_
or, Bp, +3p,, = +y
) _6+P o . _
or, P, +E' Py = B O, Py * Ept_

This is a first order non-homogeneous difference equation of the form: Y, , +aY, =c.

o+p
p

. . . C C
In this case, the time pathis : Y,| Y, ——— |(-a)' + ——
l+a l+a-

) +
HereY:p,a:—andc:a !
p p
o+
C _ v _oc+yx B a+y

“l+a 4.0 B PB+d P+d

o+y ) o+y . .
= - —— | +
So, p, (po B+3]( B] 5 where p, represents the initial price. Further,

the particular solution is obtained by putting p,,, = p, = p(say).

= )
Then, ﬁ+§.ﬁ= Lo 5(1+§]=GT+Y or, p(‘%]:‘%y
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S_O0tY B a+y

So, p = :
B B+d P+
. . .oty . o : .
This particular solution Big S the equilibrium price. We denote it by p. So the
t
time path of pis:p, = (p,—-P) — P

3
The nature of time path of price will depend on the sign and value of (—E] .As S

t
3
and 3 are positive,(——] <0. Hence, — will be negative when t is odd and it is

B

positive when t is even. So, our time path will be oscillatory. The oscillation will be
explosive, uniform or damped according as &z 3. These cases are shown in the figures.
Inthe figure 6.6, we have shown the oscillation when & > 3. In this case, there is explosive
oscillation in price.

In the figure 6.7, we have shown the case where & = B. In this case, the price will
have constant oscillation.

In the figure 6.8, we have shown the case when & < . In this case, p will have a
damped oscillation.

D, S D, S D, S
A 4 A
6>p S 5=P S 3<B
T v / \ A
~p D . A}
o) PP, poO P P, P O P P, p
(Fig. 6.6) (Fig. 6.7) (Fig. 6.8)

In this case, p will ultimately converge to the equilibrium value (however, technically
that value will be reached only after infinity period). We shall say that the equilibrium is
stable in the sense that the actual price will gradually move towards the equilibrium
value.
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6.5.3Multiplier-Accelerator Model of Trade Cycle
(Samuelson’s M odel of Business Cycle)

There are so many theories to explain business cycles. They may be divided into two
groups—non monetary theories and monetary theories. Schumpeter has given a
non-monetary theory of trade cycle in terms of innovations while Pigou has given a
psychological theory. Another non-monetary theory is the climatic theory of Jevons.
Among the monetary theories, the most important is the Hawtrey theory which seeks to
explain business cycle in terms of expansion or contraction in bank credit.

Samuelson has given a non-monetary theory of trade cycle. He argues that trade
cycles are created due to the interaction between the multiplier and the accelerator.
Later, Hicks further developed this theory. We shall briefly discuss Samuelson’s
Multiplier — Accelerator theory.

From the multiplier theory, we know that when there is an increase in autonomous
expenditure, the equilibrium level of income rises by a multiplier effect. Again, from
the Acceleration Principle, we know that a change in the level of income will bring a
change induced investment. This will again lead to a change in the level of income
through multiplier process. Thus, there is an interaction between the multiplier and the
accelerator.

According to Samuelson, the interaction between multiplier and accelerator creates
cyclical fluctuations in income. To show it, we consider a model which is based on the
following assumptions :

(1) There are two groups in the economy — households and firms. So, aggregate
demand = C, + ..

(2) The consumption function is assumed to be linear. There is one period lag in the
consumption function. C, = bY,_, (0<b<1)

(3) The investment function is given by the acceleration principle. There is one period
lag in the investment function. So, I, = v(Y, , -, ,) where v is the accelerator.

Now, equilibrium requires, aggregate supply of goods and services = aggregate
demand for goods and services, i.e., Y, = C, + I,

or, Y, =bY_, +Vv(Y,_,-Y,,)

o, Y,—(b+Vv)Y,_, +vY _,=0

Puttingb (=MPC) =1-sie.,1-MPS,weget, Y, —(L-s+V)Y_ +VY ,=0

This is a second order homogeneous difference equation. The solution of this equation
gives us the time path of income.
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Let Y, = x' be a solution. Then, we may write, X' — (1 —s + V)X + vx2 =0
or, X2 — (1 - s+ Vv)x + v =0, (assuming x-2 = 0).
This is a quadratic equation in x. Let X, and x, be the roots of this equation. Then,

(1—5+V)£/(L—s+V)? —4v
5 :
The solution of the difference equation can be written as, Y, = B,x; +B,X;

where 3, and 3, are two arbitrary constants to be determined from the initial condition.
The nature of the time path of income depends on the nature of the roots x, and x,.

The sum of the roots, x, + X,=1-s+v>0.

The product of the roots, x,x, =v >0

So, both the roots are positive.

Now, roots will be real if (1 —s + v) > 4v

or, (1-s+V) = 2/v,0r, 1-2JV+Vv)=s

S0, (i) (L—+/V)? > (¥s)2and (i) (v —1)? = (/s)?

From (i), we get, (1—vv) > /s or, Jv <1—+/s or, v<(1—+s)

From (i), (VV—1)=+/s or, VvV =1++/5 or v>(1++/5s)’

Case (i) : When v < (1—\/§)2 , 1.e., v is less than unity, both x, and x, are less than

unity. Then x; -0 and x;, — 0 ast — oc. Thus, there will be steady decline in the
level of income.

(Xl’XZ):

Case(ii) : Whenv > (1+ \/§)2 , 1.e., v>1, then at least one of the roots is greater than

unity. So, either x; or x; or both will tend to oc as t — oc. In this case, as time passes on,
there will be steady growth in income.

Roots will be complex if (1 — s + v)? < 4v. Proceeding as before, we get the following
condition : (1—+/5)? <v < (1++/s)?.

Here we get 3 cases.

Case (iii) : (1—«/§)2 <v<1. Here v is less than unity. In this case, there will be
fluctuations in the level of income and the fluctuations will be damped.

Case(iv) : . Here v is greater than unity. There will be fluctuations
in the level of income and fluctuations will be explosive.
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Case (v) : v =1. In this case, there will be regular fluctuations in income.
Thus we get different types of time path of income depending on the values of the
parameters — s and v. In short, we can put our main results in the following table :

Range of v Path of output or income
V< (1-+/s)? steady decline

1-+/5)* <v<1 damped oscillations
v=1 regular oscillations
1<v<(l++5)? explosive oscillations

v > (1++/s) steady growth

The different cases can also be represented in the following way.
0] A B C

° |

| |
| | |
(1 -5y 1 (1 ++/5)°
Suppose the length OB = 1 unit. OA represents (1— \/§)2 and OC represents (1+ \/5)2 :

Thus, if the value of v lies in the range OA, there will be steady decline and if v lies to
the right of C, there will be steady growth. There will be

V4 V= (1+45)? oscillations if v lies in the range AC. The oscillations will
D be damped in the range AB and explosive in the range BC
c v=1 andregularat B.
1 Thus, we see that time path of income depends on the
l/ > - -
N values of s and v. For some combinations of values, there
A 92 B will be steady growth; for some combinations there will
0 1 s be steady decline; for some combinations there will be
(Fig. 6.9) oscillations, etc. The various regions are shown in the

figure 6.9 where we plot v on the vertical axis and s
horizontal axis.

We have plotted three functions : v = (1—\/§)2 ,v=1and v< (1—\/§)2 .Inregion A,
we have v < (1—\/§)2 . In this region, there will be steady decline. In region D, we have
v<(l+ \/§)2. In this region, there will be steady growth. In reagion B, we have

1>v>(1—+/s)?and there will be damped oscillations. In region C, we have
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1<V < (1++/s)?and there will be explosive oscillations. On the line v = 1, there will be
oscillations with constant amplitude. The oscillations take place in regions B and C

where v lies between (1—+/s)?and (1++/s)?, that is, in cases (iii) and (iv) where the
roots x, and X, are imaginary.

The above model cannot be, however, used as a satisfactory model of trade cycle. In
the real world, trade cycles are more or less regular. But in Samuelson’s model, cycles
are regular if v = 1 which is a special case.

Secondly, in Samuelson’s models, trade cycles will be symmetric. But such a
symmetry is absent in the real world where depressions are generally shorter than booms.

However, this theory can be used as a useful ingredient of trade cycle theory. Several
models have been built up on the basis of this model. Hence it occupies an important
place in the theory of trade cycle. For example, Hicks has developed a more satisfactory
theory of trade cycle on the basis of this multiplier-accelerator model.

6.6 Application of Differential Equation in Economics

We know that differential equations are used in any economic model using time as a
continuous variable. In economics, we are interested to know the rate of change of
various economic variables over time like price, output, investment, etc. Such rates of
change can be known by applying differential equation. Hence there are so many
applications of differential equations in Economics. In this section we shall consider
two important applications of differential equation in the context of (i) Domar model of
economic growth and (ii) Price dynamics in a competitive model. Let us discuss them
one by one.

6.6.1 Domar Model of Economic Growth

Domar has tried to find out the condition for steady state growth in a free capitalist
economy. He argues that investment has two roles. On the one hand, it raises aggregate
demand. On the other hand, it raises productive capacity i.e., potential output. To have
balance between demand and supply, investment should grow at a particular rate. Then
there will be steady state growth in the economy. Otherwise, the economy will deviate
from that steady state or equilibrium growth path. Let us consider the Domar model of
economic growth.

Domar mentions that investment has two effects. First, investment raises aggregate

dy 1dl

demand through multiplier effect i.e., ot st We get this in the following way.

Equilibrium requires equality between planned saving and planned investment,
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1
i.e.,, S=1.Itisassumedthat S=s.Y, (0<s<1).So, weget,sY=1lor, Y Zg-l :

It is assumed that S, 1 and Y all are functions of time(t). So, differentiating both sides

dy 1dl .
of our equation, we get, ot st This is our multiplier effect. Secondly, investment

raises or adds to productive capacity of an economy. Let P be the potential output and 3
P
be the capacity capital-output ratio, i.e., Pa B or, P=BK. Assuming P and K as functions

of time (t), we can get (Z—T = B.cij—lt( =f.l. So, | adds to productive capacity.

Now, in equilibrium, productive capacity of the economy is to be fully utilised i.e.,
Y = P. We assume that initially there is equilibrium in the economy. So, Y = P. Now, this

equilibrium will be maintained in the next periods if Z—T:d—P

dt

1 dl 1 dl .
or, ;E:BI . or, T'E:SB’ i.e., if investment grows at the rate, sB.

. : : dl
We can find out the time path of investment. Here, Frin spl, or, %—sﬁl =0.

This is a first order linear homogeneous differential equation. Its solution is :
I(t) = 1(0) e Bt = [(0)esf, where 1(0) is the initial investment.
Clearly, the rate of growth of investment required for equilibrium is sf.

Y S S
This is actually warranted rate of growth (s/v) of Harrod : sB = s.— = =—.
i y g (siv) B K KIvY -V

Now, what happens if the actual rate of growth(r) is different from sB? If the actual
rate of growth is r, then I(t) = 1(0)e"

di(t) o
Then, G r.1(0)e
So, Z—T = 1.% ! 1(0)e. This is the rate of change of demand for output.
S S

Again, from capacity or supply side.
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r
7_| 0 rt
?j_T:BI(t)zﬁl(O)ert L dY/dt g (0)e

“dP/dt BIO)e"  sB

r dy dpP
Ifr>spie, —=>1, then —>—.
s[3|e,SB , the a0 dt
That is, demand rises at a greater rate than the productive capacity. So, there will be
excess demand and producers will further raise the actual rate of investment (r). Then r

will further diverge from sp.

. . r dy dP . . .
Similarly, if r < s, £<1 and E<E i.e., there will be excess capacity. So the

producers will reduce the actual rate of investment(r). Then, again, r will diverge from
sB. The producers are making the wrong kind of adjustment. This is, in Harrodian
jargon, known as knife edge instability. To maintain equilibrium, investment should
grow only at the rate r = sp. Any deviation from such a razor’s edge will lead to either
excess capacity or excess demand. Then the economy will deviate farther and farther
from the equilibrium growth path. Hence the problem is popularly called the knife-
edge problem.

6.6.2 Price Dynamicsin a Competitive M odel

In a competitive market, price is determined by the interplay of demand and supply.
Let quantity demanded,

Qg =0 —PBp (o, f>0) (1)

and quantity supplied be

q,=-v+3p(y,8>0) -(2)
d

Further, d—f =0(q,—q), (6>0) ..(3)

Equation (3) implies that the rate of change of price over time is directly proportional
to the excess demand. We have to find out the equilibrium price and time path of price(p).

The equilibrium price (p) can be obtained from demand - supply equality, i.e. putting

qs:qd
or,-y+op =a-pBp.or,(B+3)p =a+y
— _ 0L+y
T p= ..(4
P= s *

This is our equilibrium price.
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Let us consider the time path of price. Substituting (1) and (2) in (3), we get,
dp

dt

d
© o = Ol + )~ (B + 5)p]

= 0[(o—vp) = (=v + 8p)]

Now, from equilibrium price given by equation (4),

d
a+y=(@+O)p o g =O[B+3)P - (B + )]

o _ _
or, ¢ = 0B +8)(P )

d
or, 4o+ 0(B +3)p = 0(3 + ).
Putting (B + 8) = k, some constant, we get,
dp

—+kp=kp.

dt

d
This is of the standard differential equation of the form : —y+ay =b

dt

Then the time path of yis 1y, =y_+ A

or,

y(t) = [y(O) - g} e ™ +2

Kp
K

kp _
So, in our context, p(t) = [p(O) —?p}e'kt +— asa=kandb=kpP.

Thus, we get, p(t) = [p(0) — ple™+ p or, p(t) = [p(0) — ple®+at+ p.

p(t)4
p(0)

\

p

p(0)

—

0]

(Fig. 6.10)

N

This is our desired time path of price. The first term
on the R.H.S. is the complementary solution and the
second term is the particular solution. Ast — oc, e+

Ot — 0. Hence p(t) — p. This (p) is the long run
equilibrium price. If p(0) > p, the time path of p will
approach pfromabove (fig. 6.10). If p(0) < P, the time
path of p will approach pfrom below. This is shown in
the figure. Here our equilibrium is stable, as p
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approaches long run equilibrium price.

We should note that here particular solution gives the equilibrium price and the
complementary solution gives the deviations from equilibrium price.

We give below an example on price dynamics in a competitive model.

d
Example 6.13 : Demand and supply functions are given by x4 = 100 — p +d—f and

d
x$=-50+2p + 10d—$ . Find the time path of p for dynamic equilibrium if initial price is

given to be ~ 20. What will be the price at time t = 10?

d d
Solution : From the demand-supply equality, we get, —50 + 2p + 10d—f =100-p+ d—f
dp _ dp 1 50
or,9OIt +3p =150 or, at + 3p— 3

d
This is a first order differential equation of the standard from : d_)t/+ ay="b,

The solution of this equation is :
b b
)= |y(0)—— e +—=
y(®) [y( ) a} "

50
,b=—.
3

w|F

In our context, a =

- p() =

. p(t) =[20 — 50]e"3 + 50 as p(0) = 20

. p(t) = 50 — 30e~¥3 is our time path of price.
Ast — oc, e® — 0. So, p(t) - 50

This is the long run equilibrium price.

Now, if t = 10, p(10) =50 — 30 e"193(Ans.)

6.7 Some Problems on Dynamic Analysis with Solutions

Example 6.14 : Examine whether the market is stable if D, = 30 - 5p,and S, = 20 —p, ,.
Solution : Equating D, = S, we get, 30 —5p, =20 -p, ,
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1
or,5p,=p,,+10 .. p= g.pt_l + 2.
This is a first order non-homogeneous difference equation.
1 t
Its solution is : p, = (p, — E)(g] +P where p is the equilibrium price.

Setting p,=p,, = P, we get, 5p = p +100r,4p =10 . P =25

t
So, the solution is : p, = (p, — 2.5) (%) +2.5

t
Ast — o, (%) —0.50,p,—>25
Thus the equilibrium is stable. This can be shown mathematically.

1
Putting D, =S, p, = gpt_l +2

This is a first order non-homogeneous difference equation. To get its solution, we

1
first consider the homogeneous part : p, = gpt_l.
. 1
Let p, = X" be a solution. Then x' = 5 XL
1 .
X = 5 (assuming xt1 = 0)

t
P = (%) is the solution of the homogeneous part.

1 t
Thenp,=H (E] is also a solution where the value of H is to be determined from the

initial condition (putting t = 0).
For getting particular solution, we put, p, = p, ,

Il
ol

1 4_ — 5
Th h P==p =P=2 . p= =—=25,
en we have, p 5p+2 5IO P 42
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S h p—H(£T+E
0, We nave P; 5 5

pt N
5
Putting t = 0, we get, p, = H + > S H=p,—  Po
2.5 _\_\_\_‘H
2.5
1Y) _’_,_,f’ p=25
So, time path of p is : p, = (p, - 2.5) (E] +25 Po
0 7
As t — oc, p,— 2.5. If initial price p, is less than 2.5, (Fig. 6.11) t

it will gradually rise to 2.5. If initial price p, is greater
than 2.5, it will gradually come down to 2.5.
This is shown in our figure 6.11.

Example 6.15 : Consider the stability of equilibrium in the following dynamic model :
(i) Q= 100-10p
(i) Q,=25+15p
... dp
(i) oo 0.10 (Q,- Q)
Solution : Substituting (i) and (ii) into equation (iii),

d
we get, d—f =0.10(100 - 10p — 25 — 15p) = 0.10(75 — 25p)
g +25p=75
- gp F25P=T5.
This is a first order non-homogeneous differential equation of the standard form :
d b| . b
d_)t/ + ay = b. The solution of this equation is : y(t) = [Y(O) —ﬂe t vy
In our context, a=2.5,b=7.5. So, b 15 =3
a 25
Hence the solution of the given system is : p(t) = [p(0) — ple?%+ p
Here p = b_ 3.
a

Alternatively, p is the equilibrium price obtained by setting Q, = Q, i.e., 100 - 10p
=25+ 15p.
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or,25p =100-25=75 .. p =3.
. dp e
Or, setting at 0, we get equilibrium p.

. I _ 15

i.e., 2.5p=7.5 .. Equilibriump=p = 25 =3

Thus, the time path of price is :

p(t) = [p(0) - 3] &% +3

Ast —oc, et -0 .. p(t)=3

Our equilibrium is stable. Figure 6.10 represents similar idea.
Example 6.16 : Given Y (t) = bK(t), S(t) =s.Y(t).

Find the equilibrium time path of .

Solution : Y(t) = bK(t) .. K(t) = %Y(t)

dK(t) _ 1 dY (1)

S0 MO= =5~ T

. o 1 dY(t)
Again, in equilibrium, S(t) = I(t) .. sY(t) = bt

dy(t) a0

Y(t
dt  _ _

or, W— sb or, Y() ~ shdt
Integrating we get, logY (t) = sbt + log ¢ where log ¢ = constant.

Y(t
or, log (%)z log et -, YO g - Y(t) = c.est
c

Whent=0,Y(0)=c
So, Y(t) = Y(0)est
This is the time path of .

Example 6.17 : Given that Qf =120 -0.5p,, Q;=-30 + 0.3 p, and

Py = Py~ 0.2(Qf —Qf) and p, = 200. Find the time path of price (p).
Ans. p, =12.5(0.84)' + 187.5
Example 6.18 : Examine the dynamic stability of the equation :

Y,,-11Y,, +10Y,+ 27 =0,
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Solution : We have, Y, . - 11Y, . + 10Y, + 27 = 0. This is a second-order non-

t+2 t+1
homogeneous difference equation. We first consider the particular solution. Here

Y, = Yy, =Y, = ¥ Will not yield any particular solution. So we try Y, = Y .tasa
particular solution. Hence, Y (t+2)-11Y (t+1)+10Yt+27=0
or, Yt+2Y -11Yt-11Y+10Yt+27=0

_ _ _ 27
or, 9Y+27=0,0r,9Y=270r, Y= 9 3 is the particular solution.

We now consider the solution of the homogeneous part. Let Y, = Hb' be the trial
solution.

So, Hb*2 — 11Hb*! + 10Hb' =0

- b?=11b+ 10 =0, (assuming H = 0 and bt = 0)

or,b?-10b-b+10=0

or,b(b-10)-(b-10)=0

or,(b-10)(b-1)=0

~.b=1,10ie., (b, b)=1,10

The solution of the homogeneous part is : Y, =B,b; +B,b, where b, and b, are the
two roots of the quadratic b?— 11b + 10 = 0 and the values of B, and B, are determined
from the initial condition. So, the time path of Yis : Y, = B,(1)! + B,(10)' + Y

or, Y,= B, + B,(10)' + 3. _ _

As t — oc, Y, — oc. So the time path is unstable.
Example 6.19 : Find the solution of the equation Y, = 10Y, - 16Y, , + 14, given

Y,=10andY, = 36.
Solution : The given equation Y, = 10Y,, — 16Y _, + 14 is a second order linear
non-homogeneous difference equation. Let the particular solution be :

Y=Y ,=Y,=Y¥ . y=10y-16y +14 or,17y-10y =14

14>

-

Now we consider the solution of the homogeneous part : Y, = 10Y, - 16Y .
Let Y, = Hb' be the trial solution.

. Hbt— 10Hb*! + 16Hb™2 = 0

or, b?—10b + 16 = 0 (assuming H = 0 and b2 = 0)

or,b>-2b-8b+16=0

or,b(b-2)-8(b-2)=0,o0r, (b-2)(b-8)=0

- b=28,ie., (b, b)=(238).

or,7y=14 . y=
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So, the complete solution is :

Y, = By(2) + B(8) +2 |

The values of B, and B, will be known from the initial conditions. Putting t = 0, we
have, B, + B, + 2 =Y, =10 given

SoB+B,=8.
Again, ift=1, 23, +8B,+2=Y, =36o0r, 23, + 8p,=34
soB AR, =17

Solving these two equations we get, B, =5 and 3, = 3.
So the time path of Y'is : Y, = ,(2)' + B,(8)' + 2

or, Y, =5(2)' + 3(8)' + 2

Ast— oc, Y, — oc. S0, the time path is unstable.

Example 6.20 : D, = 19 — 6p, and S, = -5 + 6p, ;. Find the equilibrium price and the
time path of price. Is the equilibrium stable 2?

Solution : Putting D, = S, we have, 19 - 6p, = -5 + 6p,_,. or 6p, + 6p,_, = 24,
or, p,+p,, =4 Thisis afirst order linear non-homogeneous difference equation. Solving
it, we shall get the time path of p.

Putting p, = p,_, = P, We get the equilibrium price or the particular solution. Thus
ptp=4... p=2

We now consider the solution of the homogeneous part : p, +p,, =0, or, p,=-p, ,.

Let p, = Hb' be the trial solution. Then, Hbt = —Hb**

. b ==1(assuming H = 0 and b*! = 0).

Hence, complete solution is : p, = H(-1)' + 2. Putting t = 0, we get the value of H.
Thus, p,=H+2 .. H=p,-2. Thus, total solution is : p, = (p, - 2)(-1)' + 2.

If tisodd, (-1)!<0. Iftis even, (-1)! > 0. So the time path will have oscillations.
Further, |-1| = 1.

So, there will be constant oscillations. (Readers may refer to the figure 6.7 in which
we have shown constant oscillations of price).

6.8 A Note on Dynamic Optimisation

Optimum means the best situation or state of affairs. To achieve an optimum is to
optimise and a situation which is an optimum, is said to be optimal. So, optimisation
means the process or technique of achieving an optimal situation. When we optimise
something, we want to maximise or minimise something. For example, a consumer
wants to maximise utility; a firm wants to maximise profit or to minimise cost, etc. In
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unit 3, we have considered the problem of maximisation or minimisation of a variable
without constraint. Next we have analysed the problem of optimisation (i.e.,
maximisation or minimisation) with constraint. For example, we have deduced the
conditions of utility maximisation subject to budget constraint, or cost minimisation
subject to an output constraint, etc.

But those treatments were static optimisation. There we tried to find out a single
value for each choice variable, such that a stated objective function was maximised or
minimised. Such a process has no time dimension. In contrast, we introduce time
explicitly in a dynamic optimisation problem. In such a problem, we have planning
period from an initial time t = 0 to a terminal time t = T. Here we try to find the best
course of action during that entire period. Thus, the solution for any variable takes the
form of not a single value, but a complete time path.

The classical approach to dynamic optimisation is called the calculus of variation.
Later, a more powerful approach gradually developed. It is now known as optimal control
theory which replaced the calculus of variation. It uses the maximum principle to achieve
dynamic optimisation.

We may present a standard form of optimum control theory of dynamic optimisation.
Suppose we want to maximise profit over a time period. At any point of time t, we have
to choose the value of some control variable, u(t). It will then affect the value of some
state variable, y(t), via a so-called equation of motion.

In turn, y(t) will determine the profit (). Our objective is to maximise the profit
over the entire period (0 — T). Hence the objective function should take the form of a
definite integral of & fromt =0to t =T. The problem also specifies the initial value of
the state variable y, say, y(0) and the terminal value of y, say, y(T). In other words, the
model specifies the range of values which y(T) is allowed to take.

Now we may state the simplest problem of optimal control as follows :

Maximise IF(t,y, u)dt (1)
. dy
subject to ot (=y)=1(t,y,u -.(2)
y(0) =A y(T) free .(3)
and u(t) eU for all t €(0, T) [e implies belongs to] ..(4)

Equation (1) is our objective function. It shows how the choice of control variable u
at time t, along with the resulting y at time t, determines our object of maximisation at
t. Equation(2) is the equation of motion for the state variable y. It provides the mechanism
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by which our choice of control variable u can be translated into a specific pattern of
movement of the state variable y. Equation(3) states that in the initial state, the value of
y at t = 0, is a constant A, but the terminal state Y(T) is left unrestricted. Finally, our
equation (4) states that the permissible choices of u are limited to a control region U.
However, it may also happen that u(t) is not restricted.

6.9 Summary

1. Use of Difference Equation : Difference equation is used when time is taken as
discrete variable. This equation gives us the equilibrium value of a variable and also the
rate of change of the variable over time.

2. Solution of a Difference Equation : Solution of a difference equation has two
components : complementary solution and particualr solution. The complementary
solution gives the nature of time path of a variable while the particular solution gives
the equilibrium value of variable.

3. Differential Equation : Differential equation is used when time is treated as a
continuous variable. The solution of a differential equation has also two parts :
complementary solution and particular solution. White the particular solution gives the
long run equilibrium value of a variable, the complementary solution informs us ablut
the nature of time path of the variable.

4. Application Difference Equation in Economics : Difference Equation has many
uses in Economics. In particular, with the help of difference equation, we may dicuss
Keynesion dynamic multiplier, cobweb model of price variations and multiplier
accelerator model of trade cycle.

5. Application of Differential Equation in Economics: Differential equation has also
many applications. In particular, with the help of differential equation, we may discuss
Domar model of economic growth and price dynamics in a competitive model.

6.1 Excercises

Short Answer Type Questions

What is static analysis?

What do you mean by comparative static analysis?

What is dynamic analysis?

Give the general form of a linear non-homogeneous difference equation.
What is linear homogeneous difference equation?

ok~ w N e
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Give the general form of a first order linear non-homogeneous difference equation.
Write down a first order linear homogeneous difference equation.

What are the components of total solution of a difference equation?

What is the nature of time path of Y if Y, = 4(2.5)" + 10?

10. What kind of time path is represented byY 4(-0.5)t + 20?

11. State the nature of time path of Y if Y, = 5(-1)' + 30.

12. What is differential equation?

13. When is a differential equation used in a dynamic analysis?

14.When is a difference equation used in a dynamic analysis?

15. What is a cobweb model?

Medium Answer Type Questions

© ® N o

1. Distinguish among static analysis, comparative analysis and dynamic analysis.

2. Why is dynamic analysis necessary?

3. What is iterative method of solving a difference equation?

4. How can dynamic analysis deal with the Keynesian static multiplier when b = 1?
1

m] when b > 1?

. Mention some limitations of multiplier-accelerator model of trade cycle.

5. How will you treat the Keynesian static multiplier (:

6

7. Solve the difference equation, AY, = 0.5Y,, given Y =Y whent = 0.

8. Solve the difference equation Y, -Y,_, =3Y,_,

9. Y,=Y,_, +6, given initial income =Y. Solve the equation.

10.Att=0, Y, =Y. Now solve the difference equation Y,-Y,, =0

11 IfY =Y at t =0, the deduce the time path of Y of the equation Y, - 2Y, , =0

12.Given C,=200+0.75Y, , I, =50 + 0.15Y, and Y, = 3000, find time path of Y. Is
the equilibrium stable?

givenY, =Y, whent=0

-1’

13. Write a short note on dynamic optimisation.

Long Answer Type Questions

1. Describe the process of solution of a first order linear difference equation.

2. Describle with suitable examples the process of solution of difference equations by
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iterative method.
3. Consider the problem of dynamic stability of equilibrium of the time path
Y, = Abt + Y taking different values of b. (A = constant).

4. Describe the process of solution of a second order non-homogeneous difference
equation.

5. How will you solve a first order linear differential equation?

6. Explain how Keynesian multiplier theory can be dynamised and its inconsistencies
can be tackled when b > 1.

7. Describle the cobweb model of price fluctuation taking first order difference equations
of demand and supply functions.

8. Explain the multiplier accelerator model of trade cycle as formulated by Samuelson.

9. Analyse the Domar Model of economic growth in order to explain the concept of
knife edge instability.

10. Using differential equations, describe the process of price dynamics in a competitive
model.

11.D, =18 -3p,, S, = -3 + 4p,_,. Is the equilibrium stable?

12. Consider the following multiplier-accelerator model : C, = oY, , I, = B(C, - C,,)
andY, = C, + |. Here, o = 0.9 and = 0.5. Find the time path of income (Y) and
examine the nature of the time path.
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